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Model Estimation and Inference
We propose a parsimonious survival-convolution model for predicting key statistics of COVID-19 epidemics (daily
new cases). For the survival function of presenting COVID-19 symptoms, previous work1 indicates that the incu-
bation period for COVID-19 has an average of 5·2 days and that the longest time was reported up to 21 days. Thus,
we assume that the survival function for COVID-19 symptom onset, S(k), follows an exponential distribution with
mean 5·2 truncated at 21 days. We model the infection rate a(t) as a non-negative piece-wise linear function (linear
spline and assume a(t)≥ 0). For China and South Korea, a(t) is given as follows:

a(t) =
{

a+0 t < t1
(a0 +a1(t − t1))+ t ≥ t1

, (s1)

where x+ = max(x,0) and t1 is the calendar time of reporting the first case. That is, before the first case is reported,
the public is unaware and the infection is latent, so the infection rate is assumed to be a constant; however, once the
first case is reported, the public is alerted and various response strategies are gradually introduced and take effect,
so that we expect the infection rate will decrease (i.e., a1 ≤ 0). In this simple model, there are three parameters
that will be estimated from data, including t0 (the date of the first case), a0, and a1.

When a massive public health intervention (e.g., nation-wide lockdown) is introduced at some particular date,
we further add an additional linear function after this date and introduce a new slope parameter. Thus, the change
in the slope parameters before and after an intervention reflects its effect on reducing the rate of decline in disease
transmission (i.e., “flattening the curve”). Furthermore, since the intervention effect may diminish over time, we
introduce another slope parameter two weeks after intervention to capture the longer-term effect. Thus, for Italy
and US we place additional knots at t2 (the date of national lockdown for Italy and the declaration of national
emergency for US) and another knot at t3 (two weeks after t2). Therefore a(t) is modeled as:

a(t) =


a+0 t < t1,
(a0 +a1(t − t1))+ t1 ≤ t < t2,
(a0 +a1(t2 − t1)+a2(t − t2))+ t2 ≤ t < t3,
(a0 +a1(t2 − t1)+a2(t3 − t2)+a3(t − t3))+ t ≥ t3.

(s2)

We let θ denote all parameters and let Y (t;θ) denote the predicted new case number at day t for a given θ using
recursive equations in (1) and (2) in the main manuscript. To estimate θ , we divide the reported daily new cases
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into training data to fit the model and testing data for validation. Denoted by Yo(t1),Yo(t1+1),Yo(t1+2), ....,Yo(t2),
the training data consisting of the daily new cases reported from the date of the first reported case, t1, to the last
date in the training set, t2. We minimize the following loss

∑
t1≤t≤t2

[√
Yo(t)−

√
Y (t;θ)

]2
(s3)

to estimate θ . The square-root transformation is applied to the daily cases since this transformation is known to
be a variance stabilizing transformation for Poisson counts. Computationally, we perform grid search of t0 and for
each t0, we apply a gradient-based optimizer with adaptive learning rate (i.e., Adam2) to obtain other parameters.
The algorithm is implemented in Tensorflow3. We let θ̂ be the minimizer of (s3). With θ̂ , we can use equations
(1) and (2) in the main manuscript to predict any new daily cases in future dates. Furthermore, by comparing the
estimated a(t) (and correspondingly, Rt ) before and after an intervention occurs, we can estimate the intervention
effect in terms of the change of infection rates under the regression continuity design.

For statistical inference such as obtaining confidence intervals of predicted numbers or estimated intervention
effects, we assume that the standardized residuals, [Yo(t)−Y (t;θ)]/

√
Y (t;θ), are exchangeable. Thus, permuta-

tion method can be used. We permute the estimated residuals and reconstruct observed cases by adding permuted
residuals multiplied by the square-root of the observed case numbers. We repeat this process 500 times and re-
analyze each set of permuted data to yield a set of estimates for θ , the corresponding set of predictions for Y (t;θ)
and estimated intervention effects. We obtain 95% confidence intervals using quantiles of the set of estimates.
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