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1 Mathematical model and configuration

The mathematical model used in this article is derived from the classical SIR (Susceptible-
Infectious-Recovered) [7, 6, 2] augmented to incorporate human movement, and separate the
reported cases and unreported cases. The model is illustrated in the flowchat below:

In the model, for each state, the population is divided into six compartments: Si(susceptible),
Ei(latent), Ii(reported infections), Ai(unreported infections) and Ri(resolved). The subindex
i stands for the index for the state. Among the six compartments, S, E and A are “free”
people and can move from state to state, while I, and R are monitored and isolated.

The model is composed of a coupled ordinary differential equation (ODE) system. For
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Figure S1: Illustration of the augmented susceptible-infectious-recovered model.
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each state i, the model writes as:
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The ODE system is equipped with the following initial data (t = 0 standing for March
1, 2020):

Si(0) = Ni −Ei0 −Ai0 − Ii0 , Ei(0) = Ei0 , Ii(0) = Ii0 , Ai(0) = Ai0 , Ri(0) = 0. (2)

In the equation, the unit for t is one day. Ni(t) is the total population of state i at time
t, and Pi = Si + Ei + Ai is the free population. nij is the number of inflow from state j to
state i. bi and ri are the transmission rate and reporting rate of state i. cI (cA, resp.) is the
proportion of positive cases that show critical condition for I (unreported cases A, resp.).
De is the latent period. Dc and Dl are the infectious periods of critical cases and mild cases.
αt is a parameter to tune the traffic flow.

We emphasize two main differences in modeling compared with literature. In [9], the
authors study the inter-city traffic and its impact on the spreading of COVID-19 in China.
The situation in China and that in the US are very different. In China, the epicenter is
clear: the city of Wuhan, Hubei province, and the outbreak starts mid-January, 2020. The
COVID-19 outbreak in the US, however, is multi-sourced. The consequence is that in the
model in [9], the initial condition for cities excepts Wuhan is clear: the latent, the reported
and the unreported cases are all zero. In this model, however, the initial conditions Ei0 are
unclear for all states; Another big difference is, according to clinical findings, the latent cases
also have the potential of transmitting the virus, and thus we add the interaction of Ei with
Si into the increment of Ei [8, 9, 1].

The unknown parameters and state variables in the equation set are

∗ bi: the transmission rate with non-informative prior range [1, 1.5];

∗ ri: the report rate with non-informative prior range [0.1, 0.3];

∗ Ei0: the data for the latent population with non-informative prior range [0, 500].

∗ Ai0: the initial data for the unreported population with non-informative prior range
[0, 200].

∗ Si0: the initial data for the susceptible population defined by Ni − Ei0 − Ii0 − Ai0.
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Other parameters are:

γ: the transmission ratio between unreported and latent. In the simulation we set it to
be 0.5, but it needs justification from clinical results;

Dc: the average duration of infection for critical cases. We assume Dc = 2.3 days [5].

De: the average latent period. According to [12], De = 5.2 days.

Dl: the average duration of infection for mild cases. We assume Dl = 6 days.

αt: the ratio of interstate travel volume compared to that of 2019 during the same period.
The travel flow information nij was extracted from the SafeGraph mobility data, and
we set αt = 0.5 to represent the travel reduction situation observed in the year of 2020.

cI : proportion of critical cases among all reported cases. We assume cI = 0.1.

cA: proportion of critical cases among all unreported cases. We assume cA = 0.2.

There is an essential assumption made in the model: the homogeneity in the population.
This means the traffic flow is a good representation of the total population. The susceptible,
exposed, and unreported move in and out of states at the same rate. This explains the Si

Pi
,

Ei
Pi

and Ai
Pi

terms in the S/E/Ai equation.
The effective reproductive number Re could be computed as

Re =
b

E + A

[
γDeE +

DcDlA

cADl + (1− cA)Dc

]
. (3)

Re depends on time due to the time dependence of E and A.

2 Data acquisition

2.1 COVID-19 Observation Data

The only available data in the (S−E− I−A−R) system, for every state, is I, the reported
confirmed cases. We fetch the data from a community-developed, open source project:
Novel Coronavirus (COVID-19) Cases, developed by the Center For Systems Science and
Engineering at the Johns Hopkins University [3] 1.

2.2 Population and Human Mobility Data

We downloaded the total population data by state in 2019 from the US Census Bureau. In
addition, we collected over 3.6 million points of interest (POIs) with travel patterns in the
United States from the SafeGraph business venue database2. The SafeGraph’s data sampling

1https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_

19_time_series/time_series_covid19_confirmed_global.csv
2www.safegraph.com
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correlated highly with the United States Census populations3. These mobile location data
consist of “pings” identifying the coordinates of a smartphone at a moment in time. To
enhance privacy, SafeGraph excludes census block group (CBG) information if fewer than
five devices visited a place in a month from a given CBG. For each POI, the records of
aggregated visitor patterns illustrate the number of unique visitors and the number of total
visits to each venue during the specified time window (i.e., March 1st to March 31st 2019
in our dataset), which could reflect the attractiveness of each venue and the national spatial
interaction patterns during the last March travel. According to the ODE modeling needs,
we further aggregated the travel patterns to the state-to-state spatial scale as shown in
Figure S2. In the model, we set the parameter αt = 0.5 to represent the travel reduction
situation observed in the year of 2020 [13].

Figure S2: The map of state-to-state travel patterns aggregated in March 2019 (Data source:
SafeGraph; Visualization: kepler.gl)

.

3 Parameter fitting methodology

Each state has its own S − E − I − A − R data. We assume all the states have their own
transmission rate b, and the reporting rate r. In this section we discuss the method we apply
to recover these parameters.

To identify the parameters is a typical data assimilation problem: one has the knowledge
from an underlying ODE model, and the access to evolution data. The goal is to build a

3www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset
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Figure S3: Flowchart of data assimilation: u is the state variable, Gn−1,n(u) is the forward
map by running the ODE from time step tn−1 to tn. q is the likelihood function that measures
the probability of the error term d−Mu where M is the measuring operator.

probability density function that reveals the possible value and the probability of the state
variable. Two main ingredients in DA are ODE simulation, and the Bayesian analysis. The
ODE system serves as the prior information, and the Bayesian formula blends such dynamical
system with the newly fetched data to generate a posterior distribution of the state variables
and the parameters. The general flow chart of data assimilation is found in Figure S3.

In the flowchart, Pn|n−1 is the probability density of u upon the evolution step, and Pn|n
is the probability density obtained through the analysis step.

In our case, u is the augmented state variable that includes both the unknown parameters
(b, r) and the state variable (I, E, S,A,R) for every state:

u = (bi, ri, Ii, Ei, Si, Ai, Ri)
> ∈ R7k ,

where k is the number of states/regions used in the fitting. We transpose it to make it into
a column vector. We are aiming at building a distribution density function of u over the R7k

space. Gm,n(u) is the solution to the ODE (1) at time tn with u serving as the parameter in
the equation at time tm. The measuring operator is M(u) = [Ii]

k
i=1, and thus we denote

M(u) = M · u , with M = ⊗k[0, 0, 1, 0, 0, 0]] ,

meaning M is a 7k length vector that has k nontrivial entries that pick up all Ii information.
We further assume the collected data has a Gaussian perturbation from the true mea-

suring operator:
dn =M(un) + η , with η ∼ N (0, σ2) ,

and thus naturally the likelihood function is:

q(d|u) =
1

2πσ
e−
|d−M(u)|2

2σ2 .
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Then together with the two formula for the evolution step and the analysis step:

– Evolution: Pn|n−1(u) = δ(u− Gn−1,n(u′))Pn−1|n−1(u
′)

– Analysis: Pn|n(u) ∝ Pn|n−1(u)q(d|u)

one can iteratively update Pn|n(u), giving Pn−1|n−1, the probability density of u at time
tn−1. In the equation ∝ is the proportional sign: one needs to normalize Pn|n to make it a
probability density function so that

∫
Pn|n(u)du = 1.

There are many choices of data assimilation methods. We choose to utilize Ensemble
Kalman Filter that is steered towards analyzing systems having high dimensional state vari-
ables. It is a technique, derived from the classical Kalman Filter for the application in
atmospheric science, with the analytical covariance matrix replaced by the ensemble version,
eliminating the computation of the the Kalman gain matrix and the Riccati Equation that
are typically expensive in high dimensional space. It is proved to the effective in the Gaussian
case for linear forward model and the measuring operator [4, 10, 11]. The idea is to sample a
fixed number of particles on the state variable space according to the initial distribution, and
move these particles around at every discrete time step with certain dynamics, to represent
the newly adjusted distribution. Denote the number of particles by N , and the j-th particle
after the evolution step at time tn by uj,En , and the j-th particle after the analysis step at tn
by uj,An , we now summarize the algorithm:

– Evolution:
uj,En = FE(Gn−1,n(uj,An−1)) .

where FE is the Forward-Euler discretization applied on ODE (1).

– Analysis:

uj,An = uj,En + Covup
n

(
Covpp

n + σ2
)−1

(dn + ξjn −Muj,E) ,

where ξjn is a k-length vector with each entry being random variable i.i.d. drawn from
N (0, σ2), dn is the k-length vector collecting the reported infected data on k counties.
To compute the covariance matrices, we set:

ūEn =
1

N

N∑
j=1

uj,En , Covuu
n =

1

N

N∑
j=1

(uj,En − ūEn)(uj,En − ūEn)> .

Then naturally

Covup
n = Covuu

n ·M> , Covup
n = M · Covuu

n ·M> .

are matrices of size 7k × k and k × k respectively.

4 Results

The results are divided into two categories: 1. parameter fitting; 2. COVID-19 infection
prediction. The computation is done on the state level. Data from 50 states and D.C. (thus
k = 51) in the United States are used. The model and data assimilation analyses were ran
from March 1 to March 20, 2020, and we predict the future infectious cases in different states
from March 21 to April 29, 2020 with different parameter setting scenarios.
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4.1 State results

For parameter fitting, we utilize the method discussed in Section 3. Total 2000 samples
with non-informative prior are adopted to determine 7 × 51 = 357 state variables. The
standard deviation of noise is set to be σ = 10. In Figure S4-S5, we plot the susceptible,
exposed, unreported infections and resolved, in time, for the top 10 states with most total
confirmed cases as of March 20, respectively. In Figure S6-S7, we plot the reported infections
in time, for these 10 states. For most states, the number of reported case grows essentially
exponentially fast. Figure S8-S11 show the inferred transmission rate b and reported rate r.
Figure S12-S13 show the time series of effective reproductive number Re for different states.
The signal in the data is rather weak, and for some states, the number of E and A cannot
be inferred at the early stage of the breakout, leading to Re = 0 for a small period of time
for some states.

4.2 Prediction

The first part of our prediction includes the case study for different transmission rate b and
reporting rate r. In the following, we define the ratio between transmission rate in prediction
step and data assimilation step (March 20) by αb, and define the ratio between unreporting
rate 1− r in prediction step and data assimilation step (March 20) by αr, namely

bi = αbbi,0 , ri = 1− αr(1− ri,0)

Fig S15 shows the effective reproductive number Re on April 29 as a function of αr and
αb for five states.

We further take a proactive approach by directly identify and quarantine the exposed
population. The time in days used to discover and isolate them is, on average Dq. The
model is changed to:

dSi
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= −biSi(Ai + γEi)
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+
∑
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−
∑
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+
∑
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∑
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− (1− cA)
Ai

Dl

+
∑
j 6=i

αtnij
Aj

Pj

−
∑
j 6=i
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Pi

dRi

dt
= cI

Ii
Dc

+ (1− cI)
Ii
Dl

+ cA
Ai

Dc

+ (1− cA)
Ai

Dl

dQi

dt
=
Ei

Dq

. (4)

As shown in Fig. 3c, the timely self-quarantine and strict isolation right away or starting
at most about 3.6 days (the median value) after exposed to the SARS-CoV-2 virus is found
most effective in containing the COVID-19 outbreak for most contagious states in the US.
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Figure S4: Simulation of S−E−A−R for different states. The box and whiskers show the
median, interquartile range, and 95% credible intervals.
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Figure S5: Simulation of S − E − A−R for different states. (continued)
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Figure S6: Simulation of confirmed cases I (boxes) and the true confirmed cases Itrue (blue
x’s) for different states. The box and whiskers show the median, interquartile range, and
95% credible intervals.
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Figure S7: Simulation of confirmed cases I (boxes) and the true confirmed cases Itrue (blue
x’s) for different states. (continued)
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Figure S8: Inferred transmission rate b for different states. The box and whiskers show the
median, interquartile range, and 95% credible intervals.
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Figure S9: Inferred transmission rate b for different states. (continued)
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Figure S10: Inferred reporting rate r for different states. The box and whiskers show the
median, interquartile range, and 95% credible intervals.
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Figure S11: Inferred reporting rate r for different states. (continued)

15



1 3 5 7 9 11 13 15 17 19

March

0

1

2

3

4

5

6

R
e

CA

1 3 5 7 9 11 13 15 17 19

March

0

1

2

3

4

5

6

R
e

FL

1 3 5 7 9 11 13 15 17 19

March

0

1

2

3

4

5

6

R
e

GA

1 3 5 7 9 11 13 15 17 19

March

0

1

2

3

4

5

6
R

e

IL

1 3 5 7 9 11 13 15 17 19

March

0

1

2

3

4

5

6

R
e

LA

1 3 5 7 9 11 13 15 17 19

March

0

1

2

3

4

5

6

R
e

MA

Figure S12: Inferred effective reproductive number Re for different states. The box and
whiskers show the median, interquartile range, and 95% credible intervals.
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Figure S13: Inferred effective reproductive number Re for different states. (continued)
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Figure S14: The prediction time series of the total infected population in the 15 most affected
states under five scenarios: (A) αr = 1 and αb = 1, i.e., all parameters took the values of
the initial configuration, obtained through data assimilation method using the numbers
of confirmed cases during March 1 – March 20, 2020; (B) the travel flow was reduced to
αt = 0.05, while other parameters values remained unchanged; (C) αr = 0.1 and αb = 1; (D)
αr = 1 and αb = 0.1; (E) αr = 0.1, αb = 0.1. In the simulations, the transmission rate was
set to be b = αbb0 and the reporting rate was set to be r = 1 − αr(1 − r0). Where r0 and
b0 were the reporting rate and the transmission rate on March 20, 2020, which are inferred
from the data assimilation step.
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Figure S15: Re on April 29 for different αb and αr. The red line is the level set Re = 1. It
can be seen that increasing the reported rate helps to diminish the reproductive number.
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4.3 Limitation

For the scope of this paper, we do not consider the hospital capacity, and thus we assume
it is large enough and can accommodate all reported cases. However, if one can have access
to the hospital capacity in each state, the capacity information can be fed to the model as
well.
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