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A1. Data pre-processing  41 

Imputing complete shedding, ARI and presence durations. 42 

Given the 3-4 day sampling intervals, complete shedding and ARI durations had to be 43 

imputed, and missing viral loads linearly interpolated. For the model, we will assume that all 44 

the cases were observed, and ignore the possibility of short duration shedding episodes that 45 

could have been missed by the sampling intervals. During the sample-collection visits, if a 46 

household member was not present, they were recorded as being ‘away’ on that particular 47 

day. As with the shedding information, there was incomplete information on continuous 48 

periods of presence or absence from the household which was also imputed. 49 

 50 

An RSV A/B shedding episode is defined as a period within which an individual provided PCR 51 

positive samples for RSV A/B that were no more than 14 days apart. Using the mid-point 52 

method, shedding was assumed to start mid-way between the last negative sample and the 53 

first positive sample, and it ended midway between the last positive sample and the first 54 

negative sample of an episode. This is illustrated below: 55 

 56 

                   57 

 58 

Grey circles are positive samples in a single episode, empty circle are negative. t1, t2, t3 and t4 59 

are dates of sample collection. 60 

 61 

L=t4 J=t3 I=t2 K=t1 

Time 

L=t4 J=t3 I=t2 K=t1 

Time 
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For (t4-t3) and (t2-t1) ≤7 days 62 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = *𝑡! + ,
𝑡" − 𝑡!

2/ 01 − *𝑡# − ,
𝑡# − 𝑡$

2/ 01  63 

For (t4-t3)>7 64 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 2𝑡! + 3𝑥 2/ 56 − *𝑡# − ,
𝑡# − 𝑡$

2/ 01 : Right censoring 65 

For (t2-t1) >7 66 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = *𝑡! + ,
𝑡" − 𝑡!

2/ 01 − 2𝑡# + 3𝑥 2/ 56 : Left censoring 67 

Where x = mean of sampling intervals for samples in an episode, which was found to be 3.45 68 

days.  69 

Any negative samples (Ct >35 or Ct=0) in between a shedding episode were ignored, i.e. 70 

were not treated like true end of shedding 71 

 72 

We imputed complete ARI episodes from intervals of recorded ARI. A virus shedding 73 

episode that had no day where an ARI was reported was assumed to be asymptomatic. For 74 

a virus shedding episode with at least one day of recoded ARI, the duration of symptoms 75 

was imputed using the midpoint method described for shedding episodes. This is illustrated 76 

below: 77 

 78 

	-	o	-	-	o	-	-	o	-	-	o	-	-		
τ1	 τ4	τ2	 τ3	

Imputed	Shedding	duration	

Imputed	ARI	duration	

Time	
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Green open circles are reported ARI symptoms (ARI positive) within the shedding episode 79 

and black open circles are confirmed absence of ARI (ARI negative). τ1, τ2, τ3 and τ4 are days 80 

within the shedding episode where information on symptoms was collected. 81 

 82 

In this case, the mean sampling interval for ARI ‘samples’ within an episode was 3.78 days. 83 

This was obtained from all ARI episodes not just the ones within shedding episodes 84 

 85 

The imputation of continuous periods of presence or absence from the household was done 86 

similar to the imputation of shedding durations, however, there was no left or right 87 

censoring. Each participant had a set of days of recorded data, these days were either 88 

marked as ‘away’ or ‘present’ in the household, e.g. a participant might have data on days 89 

{32, 36, 39, 43, 46, 50, 53, 57} with status {away, away, present, away, present, present, 90 

away, present}. Since no data is available for this individual before day 32 and after day 57, 91 

no imputation is done outside this time window. For the days within the window, 92 

imputation is done as illustrated below: 93 

 94 

 95 

Filled circles are days when the participant was recorded as being present while open ones is 96 

when they were away. The present period starts halfway between the last ‘away’ and first 97 

‘present’ and ends halfway between the last ‘present’ and first ‘away’. 98 

t=32 t=36 t=39 t=43 t=46 t=50 t=53 t=57

Time

Present Present Present
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In order to include information of the amount of virus shed by an infected person into the 99 

transmission model, the Ct value need to be converted to log10 RNA copy number which is a 100 

more direct measure of viral load. The formula used to convert Ct values to their log10 RNA 101 

equivalent was y= -3.308x + 42.9, where y=Ct values and x=log10 RNA copy number[1,2]. 102 

Following conversion of the PCR Ct values to viral load, we proceeded to interpolate the 103 

viral loads for days in an episode that did not have data. Linear interpolation was used for all 104 

the shedding episodes. It was assumed that the starting and ending sample, if data was 105 

missing, had a viral load of 2.388 log10 RNA (baseline positive Ct value converted to viral 106 

load). For two samples of viral load Va and Vb at times ta and tb, tb > ta, the gap in between is 107 

filled out as follows:  108 

For tb – ta =n, viral load Vj at time point tj for j=1…(n-1) is given by 109 

 𝑉% = 𝑉& +
%	()!*)")

,
 110 

Viral loads lower than 2.388 log10 RNA in between an episode were not included in the 111 

interpolation 112 

 113 

Imputing missing genetic information 114 

The WGS data was used to rule out transmission events where it was assumed that cases in 115 

different genetic clusters are not part of the same transmission cluster. It was also assumed 116 

that for cases within the same genetic cluster, the likelihood of a transmission event is 117 

weighed according to pairwise genetic distance dgen(i,j).  As mentioned in the main text, 118 

genetic clusters were established based on a combination of criteria: nucleotide distance 119 

cut-off, clustering patterns on the global RSV phylogeny and the inferred date of sequence 120 

divergence. As a result of incomplete sequencing of all the positive samples, there are gaps 121 
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in the genetic data. To fill these in we classified missingness into 3 categories and exploited 122 

elements of the study design to fill in the gaps. 123 

• Missing level 1: non-sequenced samples part of an infection episode with ³1 other 124 

sequenced sample. The entire episode was assigned the cluster id of the sequenced 125 

sample(s), where there was more than 1 id, the episode was divided accordingly. 126 

• Missing level 2: none of the samples in an episode were sequenced, but the episode 127 

is part of a spatial-temporal cluster with some genetic information. The entire 128 

episode was assigned the cluster id of the spatial-temporal cluster. This assumes that 129 

if an episode has a temporal overlap with other cases in the same household, they 130 

are likely part of the same infection cluster (household outbreak).  131 

• Missing level 3: none of the samples in an episode were sequenced and there is no 132 

genetic information in the social-temporal cluster. The cluster id for the entire 133 

episode was treated as augmented data and inferred along with the model 134 

parameters.  135 

Within a given RSV group, infection by a particular cluster is assumed to be a mutually 136 

exclusive process, an individual can only shed one cluster type at a time. The genetic data 137 

available is consensus whole genome sequences as such, only one cluster can be identified 138 

from a single sample. 139 

 140 

Consider a case i who had an onset after case j, both of whom have sequences. The genetic 141 

distance between case i  and j is obtained by comparing the first sequence available from 142 

case i and any sequence from j whose sampling time is closest to the first sequence from i. 143 

In the illustration below, this would mean comparing sequence Si,1 to Sj,2 to obtain genetic 144 

distance dgen(i,j). The phylogenetic analysis of Agoti et al [3] found that long shedding 145 
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episodes do not have drastically differing genetic sequences (<6 SNPs) as such it should not 146 

make a significant difference whether we compare sequences forward (Si,1 to Sj,2) or 147 

backward (Si,1 to Sj,1) in time. 148 

 149 

 150 

 151 

If either one or both of the cases do not have sequences, then dgen(i,j)  is randomly selected 152 

from the set of all pair-wise genetic distances from the specific genetic cluster. For cases 153 

with sequence data, dgen(i,j) is fixed, but for cases where one or both is missing sequences, 154 

dgen(i,j) changes every time the likelihood is calculated to reflect uncertainty. In this way 155 

only pairs of cases with sequence data contribute definitive genetic information to the 156 

parameter inference algorithm while the rest will not. We use nucleotide differences as the 157 

distance dgen(i,j). Once we have dgen(i,j), we then use this to obtain a genetic weight for the 158 

probability of a transmission event given by 𝑃%→. = 𝑒𝑥𝑝*/#$%(.,%)∗2 where 𝜗 is the rate of 159 

exponential decay and is estimated along with other model parameters. This function form 160 

results in a negative exponential relationship between the genetic weight and the genetic 161 

distance between a pair of cases.   162 

Time	

Case	j	

Case	i	

t1	 t2	

Sj,1	 Sj,2	

Si,1	 Si,3	Si,2	
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A2. Further details of the transmission model 163 

The rate of exposure  164 

In our model, an individual can get infected by someone they share a household with or 165 

from a source outside the household, resulting in a two-component rate of exposure: a 166 

within household exposure component and a community exposure component. 167 

 168 

𝜆.,3(𝑡) =

⎝

⎜
⎛
𝜂 ∗ D 𝐼%,3(𝑡)

%∈	.,5637.89:
;89:6;8</
38,7&37 ⎠

⎟
⎞
+

⎝

⎜⎜
⎛
𝜀 ∗ D 𝐼%,3(𝑡)

%∈	.,5637.89:
38==9,.7>
38,7&37 ⎠

⎟⎟
⎞

 169 

 170 

The number of infectious household contacts is observed in the data. Though there are 171 

cases from different households in the data, the sample in the study is small relative to the 172 

number of households in the community, as such the true number of infectious community 173 

contacts is unknown. We further split the community rate of exposure into two 174 

components: exposure from sampled neighbours and exposure from unknown sources 175 

represented by a time varying function fc(t). We assumed that the rate of exposure from a 176 

sampled neighbour is dependent on the spatial distance between individuals. The per capita 177 

rate of exposure now takes the form: 178 

!",$(&) =	[baseline	household	rate	of exposure * number	of	infectious	household	contacts(t)]

+

[baseline	community	rate	of	exposure	*	number	of	infectious	community	contacts(t)]
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 179 

 180 

𝜆.,3(𝑡) =

⎝

⎜
⎛
𝜂 ∗ D 𝐼%,3(𝑡)

%∈	.,5637.89:
;89:6;8</
38,7&37 ⎠

⎟
⎞
+ 𝜀 ∗

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

D 𝐼%,3(𝑡)
%∈	.,5637.89:
:&=?<6/
,6.@;A89B
38,7&37 ⎠

⎟
⎟
⎟
⎞

+ 𝑓3(𝑡)

⎠

⎟
⎟
⎟
⎟
⎞

 181 

 182 

We extended this basic formulation to include our assumptions on RSV natural history and 183 

explore factors that could influence the rate of exposure such as household size. In detail, 184 

we present the model by specifying the rate of exposure to a particular RSV cluster c acting 185 

on a susceptible person i from household h at time t, denoted 𝜆.,;,3(𝑡) as:  186 

 187 

𝜆.,;,3(𝑡) = 𝑆.,@(𝑡) L𝑀.,;(𝑡)D𝐻𝐻_𝑅𝑎𝑡𝑒;,3,%→.(𝑡)
%C.

+	𝐶𝑜𝑚𝑚_𝑅𝑎𝑡𝑒.,3(𝑡)T										…		(𝐸𝑞	𝐴2.1) 188 

Where: 189 

𝑆.,@(𝑡) is the factor modifying exposure by recent group specific infection history, age and 190 

group specific shedding status at time t given by: 191 

 192 

𝑆.,@(𝑡) = exp ,𝜙D,;.:73𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛_𝐻𝑖𝑠𝑡𝑜𝑟𝑦.(𝑡)5 +	𝜙E,&@63𝐴𝑔𝑒_𝑔𝑟𝑜𝑢𝑝F,.5193 

+ 𝜙G,39BB3𝑆ℎ𝑒𝑑𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑢𝑠.(𝑡)50 194 

!",$(&) =	[baseline	household	rate	of exposure * number	of	infectious	household	contacts(t)]

+

{baseline	community	rate	of	exposure	*	[number	of	infectious	neighbour	contacts(t)	+	

background		community	function(t)]}



 11 

 195 

𝐻𝐻_𝑅𝑎𝑡𝑒;,3,%→.(𝑡) is the cluster specific within household exposure rate from infectious 196 

individual j present in the household at time t, and is given by:  197 

 198 

𝐻𝐻_𝑅𝑎𝑡𝑒;,3,%→.(𝑡)199 

=	𝜂@ 	× 	𝜓H(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝑠𝑖𝑧𝑒.) 	× 	𝜓I,.,53𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦%,;,3(𝑡)5 	× 	𝑀%,;(𝑡) 200 

 201 

𝐶𝑜𝑚𝑚_𝑅𝑎𝑡𝑒.,3(𝑡) is the cluster specific community (external to the household) exposure 202 

rate given by: 203 

 204 

𝐶𝑜𝑚𝑚_𝑅𝑖𝑠𝑘.,3(𝑡)205 

= 𝜀𝑔 	206 

×	𝜓J,&@63𝐴𝑔𝑒_𝑔𝑟𝑜𝑢𝑝J,.5

⎝

⎜⎜
⎛

⎝

⎜
⎛
𝑀𝑖,ℎ(𝑡) D 𝑆𝑎𝑚𝑝𝑙𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟_𝑅𝑖𝑠𝑘;,3,%→.(𝑡)

𝑗≠𝑖,			𝑗	𝑛𝑜𝑡	𝑖𝑛
	𝑖′𝑠	ℎ𝑜𝑢𝑠𝑒 ⎠

⎟
⎞
	207 

+	𝑓𝑐(𝑡)

⎠

⎟⎟
⎞

 208 

Where: 209 

𝑆𝑎𝑚𝑝𝑙𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟_𝑅𝑖𝑠𝑘;,3,%→.(𝑡) is the cluster specific exposure rate from sampled 210 

infectious individual j present in a neighbouring household at time t, and is given by: 211 

𝑆𝑎𝑚𝑝𝑙𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟_𝑅𝑖𝑠𝑘;,3,%→.(𝑡) = 𝜓I,.,53𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦%,;,3(𝑡)5 	× 	𝐾3𝑑𝑖,𝑗, 𝜅5 	× 	𝑀𝑗,ℎ(𝑡) 212 

The parameter 𝜅  is the rate of exponential decay for the spatial distance kernel given by 213 

𝐾3𝑑.,K, 𝜅5 = 	 𝑒*L∗/&,(. 214 
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The background community function  215 

We defined a background cluster-specific rate of exposure, 𝑓/(𝑡), which affects susceptible 216 

individuals outside their household. This background function allows for introduction of new 217 

transmission clusters. The function form for a cluster c at time t is given as  218 

𝑓3(𝑡) = 𝛿 + D 𝑒M7*N&,)OP
.	:;6//.,@
QF)	3<9:76B	3

 219 

Where 𝛿 is the basic risk prior to any observed onsets and 𝛽 is the rate of exponential decay 220 

related to the time since onset of a case shedding cluster type c, 𝛽 is a measure of the rate 221 

at which the cluster might disappear from the community and 𝜏.,3  is the onset time of RSV 222 

cluster type c by person i. The parameters 𝛿 and 𝛽 are not cluster or group specific. The sum 223 

of the cluster specific curves has to add up to the group specific curve, otherwise using 224 

clusters could lead to an over or under representation of the background community 225 

exposure rate. To ensure that ∑𝑓3(𝑡) = 𝑓@(𝑡) we need to normalize the cluster level curves 226 

such that their sum adds up to the group level curve.  The equation for the normalized 227 

function 𝑓t3(𝑡) is given as: 228 

𝑓t3(𝑡) = u𝛿 + D 𝑒M7*N&,)OP
.	:;6//.,@
QF)	3<9:76B	3

v ×uD u𝛿 + D 𝑒M7*N&,)OP
.	:;6//.,@
QF)	3<9:76B	3

v
3∈R*

v 229 

Where 𝐶S is the set of all clusters in a given RSV group. 230 

 231 

An example of the shapes of the background community rate of exposure curves is shown in 232 

Figure A2. 1 for the 5 clusters in RSV A and Figure A2. 2 for the 7 clusters in RSV B. 233 
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 234 

Figure A2. 1: The background cluster-specific rate of exposure curves for RSV A. The 235 

normalized fC(t) curves are shown for the 5 different clusters and the group. 236 

 237 

 238 

Figure A2. 2: The background cluster-specific rate of exposure curves for RSV B. The 239 

normalized fC(t) curves are shown for the 7 different clusters and the group. 240 
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Table A2. 1 lists all the parameters in the model and gives a brief description. Despite 241 

identifying the infection pathogen at the cluster level, we do not have any cluster-specific 242 

parameters in the model. 243 

 244 

Table A2. 1: Model parameters and their descriptions 245 

Parameter 

(symbol) 

Parameter 

(name) 

Description 

𝝓𝒀 Prev.hom, 

Prev.het 

Coefficients modifying susceptibility to infection by a 

particular RSV group depending on infection history. 

Prev.hom estimates the effect of a previous homologous 

group infection, while Prev.het estimates the effect of a 

previous heterologous group infection 

𝝓𝑿 Sus.age.2, 

Sus.age.3, 

Sus.age.4 

Coefficients modifying susceptibility to RSV depending on 

age. Sus.age.2 estimates the effect being in age group 1-4 

years, Sus.age.3 the effect of group 5-14 and Sus.age.4 of 

group ≥15 relative to group <1 year. 

𝝓𝑾 Curr.het Coefficient modifying susceptibility to a particular RSV 

group based on shedding status of the heterologous group 

type 

𝜼𝒈 HH.rsv.a, 

HH.rsv.b 

Baseline rate of within household exposure by RSV group, 

per person per day.  

𝝍𝑯 HH.size Coefficient modifying the amount of within household 

exposure by household size. HH.size estimates the effect 



 15 

of being in a large household(>8 inhabitants) relative to a 

small one 

𝝑 Gen.rate For 𝑃%→. = 𝑒𝑥𝑝*/#$%(.,%)∗2 the genetic distance kernel 

giving the genetic weight on probability of transmission, 

Gen.rate is the rate of exponential decay.  

𝝍𝑰 Low.Sym 

High.Sym 

Coefficients modifying infectiousness by viral load and 

symptom status. Relative to being asymptomatic, 

Low.Sym estimates the effect of shedding low viral load 

and being symptomatic and High.Sym the effect of 

shedding high viral load and being symptomatic 

𝜺𝒈 Comm.rsv.a 

Comm.rsv.b 

Baseline rate of community exposure by RSV group, per 

person per day. 

𝝍𝑬 Exp.age.2 

Exp.age.3 

Coefficients modifying the rate of community exposure by 

age group. Exp.age.2 estimates the effect being in age 

group 1-4 years and Exp.age.3 the effect of group ≥5, 

relative to the <1-year age group 

𝜿 Dist.rate The rate of exponential decay for the spatial distance 

kernel given by 𝐾3𝑑.,K, 𝜅5 = 	 𝑒*L∗/&,( 		 

𝜹, 𝜷 Delta, 

Beta 

For the cluster specific background community function 

given by  

𝑓3(𝑡) = 𝛿 + D 𝑒M7*N&,)OP
.	:;6//.,@
QF)	3<9:76B	3
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Delta(𝛿) is the basic risk and Beta(𝛽) is the rate of 

exponential decay related to the time since onset of a 

case shedding cluster type c. 

 246 

Following from the rate of exposure is the probability of exposure to cluster c given an 247 

exposure event has occurred, expressed as: 248 

Probability of exposure = prob(any exposure event) * prob(exposure to cluster c) 249 

𝛼.,;,3(𝑡) = 31 − 𝑒𝑥𝑝*∑ \&,+,)(7),* 5 ∗ �
𝜆.,;,3(𝑡)

∑ 𝜆.,;,3(𝑡)R*
�										…		(𝐸𝑞	𝐴2.2) 250 

 251 

Where 𝐶Sis the set of all clusters in a given RSV group. 252 

This formulation factors in the fact that on any given day, an individual can only be shedding 253 

virus from a single cluster, in the respective group. The clusters are therefore competing for 254 

susceptible hosts. Exposure events are mutually exclusive and distributed according to a 255 

multinomial distribution. We thus have  256 

�𝑝𝑟𝑜𝑏(𝑛𝑜	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) + D 𝑝𝑟𝑜𝑏(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒	𝑡𝑜	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑐)
]<<	3<9:76B:

� = 1 257 

 258 

 259 

Assuming that the duration of latency can range from 0 to 5 days with probabilities [0, 260 

0,0.33,0.33,0.25,0.083] [4], we then have the following probability of onset at time t given 261 

no onsets or shedding until t: 262 

𝑝.,;,3(𝑡) = D𝜃<𝛼.,;,3(𝑡 − 𝑙)
^

<_`

										…		(𝐸𝑞	𝐴2.3) 263 
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Where L is the maximum latency period and 𝜃<  is the probability that the latency period is 264 

exactly 𝑙 days. In this way, the genetic clusters are used together with the spatial/social 265 

clusters (households) and the latency distribution (which implicitly works based on temporal 266 

clusters) to make joint inference on transmission parameters. 267 

 268 

The Likelihood 269 

Since the model is focused on the determinants of infection onset process, the data whose 270 

likelihood we are interested in is the onset data. Given the model described, the likelihood 271 

of an individual’s observed cluster c data is the probability of all the onsets, and days of no 272 

onsets where the individual was at risk of infection, i.e. not shedding RSV cluster c. For a 273 

particular cluster, this follows a Bernoulli distribution with probability 𝑝.,;,3(𝑢). 274 

 275 

For i with no onset of type c: 276 

𝐿.,3 =	�21 − 𝑝.,;,3(𝑡)6
a

7_$

 277 

Where T is the end of the observation period.  278 

For i with an onset of type c, the likelihood is give as: 279 

𝐿.,3 = L� � 𝑝.,;,3(𝑢)
9∈b,:67:&,+,)

� ∗ � � ,1 − 𝑝.,;,3(𝑎)0
&∈]7-&./&,+,)

�T 280 

In this instance, to factor in the genetic data we modify the rate of exposure given in (Eq 281 

4.1) such that: 282 

𝐻𝐻_𝑅𝑖𝑠𝑘;,3,%→.(𝑡)283 

=	𝜂@ 	× 	𝜓H(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝑠𝑖𝑧𝑒.) 	× 	𝑃%→. 	× 	𝜓I,.,53𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦%,;,3(𝑡)5 	284 

×	 	𝑀%,;(𝑡) 285 
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 286 

𝑆𝑎𝑚𝑝𝑙𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟_𝑅𝑖𝑠𝑘;,3,%→.(𝑡) = 𝑃%→. × 𝜓𝐼,𝑐,𝑗(𝑡) 	× 	𝐾3𝑑𝑖,𝑗, 𝜅5 	× 	𝑀𝑗,ℎ(𝑡) 287 

With this formulation, the genetic components of the model are dependent on the 288 

epidemiological in that they are not expressed independently in the likelihood function as is 289 

the case with modular approaches such as the kind implemented in the Outbreaker 290 

package[5,6]. We introduce 𝑃%→.  into the rate of exposure equation as opposed to directly 291 

into the likelihood because for a given case, we are not making direct inference on the 292 

source of infection or the exact date of exposure: we consider all likely dates and sources 293 

given the latency distribution. 294 

 295 

The total likelihood is thus given by the product of 𝐿.,3  over all the genetic clusters and 296 

individuals in the data 297 

 298 

𝐿 = 	�L�L� � 𝑝.,;,3(𝑢)
9∈b,:67:&,+,)

� ∗ � � ,1 − 𝑝.,;,3(𝑎)0
&∈]7-&./&,+,)

�T
3

T
.

 299 

  300 
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A3. Further details of the adaptive MH-MCMC algorithm  301 

We used Bayesian inference to obtain estimates of the model parameters j= {Prev.hom, 302 

Prev.het, Sus.age.2, Sus.age.3, Sus.age.4, Curr.het, HH.rsv.a, HH.rsv.b, HH.size, Gen.rate, 303 

Low.Sym, High.Sym, Comm.rsv.a, Comm.rsv.b, Exp.age.2,Exp.age.3, Dist.rate, Delta, Beta} 304 

and the augmented data DA given the observed data D. We assume that all the cases were 305 

observed but that for some of the cases, there is no information on the cluster id of the 306 

shedding episode, as such, the augmented data is the set of all shedding episodes whose 307 

cluster id was left unassigned by the imputation process previously described. These include 308 

cases that are part of household outbreaks with no genetic information and cases that are 309 

part of household outbreaks with more than one possible genetic cluster id. For cases that 310 

are part of an outbreak with no genetic information, a single cluster id is inferred for all the 311 

cases in the household outbreak.  312 

 313 

Bayesian inference results in an updated distribution of the parameter of interest (posterior 314 

distribution) given prior assumptions/knowledge of the parameter (prior distribution) and 315 

an expression giving the probability of a parameter value given data (likelihood) i.e. 316 

𝑃(𝜑|𝐷, 𝐷]) ∝ 𝑃(𝜑) × 	𝐿(𝜑|𝐷, 𝐷]). Where there is no exact expression for the posterior 317 

distribution, numerical methods are used to find an approximation of the target 318 

distribution, adaptive MH-MCMC is a popular first step.  319 

 320 

We specified the target distribution as 𝑝(𝜑|𝐷, 𝐷]) = 𝑃(𝐷|𝐷])𝐿(𝜑|𝐷, 𝐷])𝑃(𝜑); 𝑃(𝐷|𝐷]) = 321 

probability of the observed data given the augmented data; 𝐿(𝜑|𝐷, 𝐷]) = the likelihood of 322 

the parameters given the observed and augmented data; 𝑃(𝜑) = the prior probability of the 323 

parameters. The augmented and observed data are independent and we have no 324 
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information to inform what the missing cluster ids could be, making every combination of D 325 

and 𝐷] equally likely. Consequently, we did not include P(D|A) when calculating the 326 

posterior probability. We used weakly informative priors in the form of a normal 327 

distribution with mean 0 and a standard deviation of ~3 for the log of parameters. We 328 

initiated 3 chains and set the algorithm to start adapting the proposal distribution based on 329 

accepted parameters after 10000, 15000 and 10000 iterations respectively. Burn-in was 330 

assessed visually after which the results of the three concurrent chains were combined to 331 

infer the posterior distribution. The three chains were run for 250,000 iterations each. 332 

 333 

Choice of proposal distributions for the parameters  334 

For the parameter set 𝜑 we used a multivariate normal distribution as the proposal 335 

distribution. For iteration n in the chain a new set 𝜑∗ will be proposed such that 336 

𝜑∗~𝑁𝑜𝑟𝑚𝑎𝑙(𝜑,*$|Σ). The choice of the variance-covariance matrix Σ will determine the 337 

size of the space that is explored and how fast the MCMC chain converges. After a certain 338 

number of iterations, Σ was modified to ensure proper mixing. The modification was 339 

automated through an adaptive random walk MH-MCMC algorithm. There are several 340 

adaptation algorithms [7], we chose one that learns from the empirical distribution of 341 

values up to the (n-1)th iteration to modify the Σ at iteration n. For samples 342 

{𝜑$, 𝜑#, 𝜑!, . . . 𝜑,*$} in the MCMC chain so far, at iteration n the proposal density g(.) is 343 

given by 344 

  345 

𝑔,(. ) = (1 − 𝜀)𝑁(𝜑,*$|2.38#Σ,*$/𝑑)) + 	𝜀𝑁(𝜑,*$|0.1#Σ`/𝑑) 346 

 347 

Where: 348 
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𝜀 =	A small positive constant, chosen to be 0.05 as in [7]. 349 

Σ,*$ =	The empirical variance-covariance matrix derived from samples 350 

{𝜑$, 𝜑#, 𝜑!, . . . 𝜑,*$} 351 

	𝑑 =	The dimension of the parameter set 352 

Σ` =	The initial guess of the parameter variance-covariance matrix. This is usually a 353 

diagonal matrix of variances.  354 

 355 

This notation means for a fraction of the time (1 − 𝜀), the proposal distribution will be 356 

𝑁(𝜑,*$|2.38#Σ,*$/𝑑)) and the rest of the time it will be 𝑁(𝜑,*$|0.1#Σ`/𝑑). Prior to 357 

adaptation beginning at iteration n, the proposal distribution at iteration k is given by 358 

𝑔c(. ) = 𝑁(𝜑c*$|0.1#Σ`/𝑑) 359 

 360 

Pseudo algorithm for our implementation of MH-MCMC 361 

For each MCMC chain 362 

1. Set initial values for the parameters and assign cluster ids at random for the 363 

outbreaks with no sequence information (uninformed outbreaks). 364 

2. For every iteration n 365 

a. Update parameter values 366 

i. Propose a new set of parameters by sampling from the proposal 367 

distribution: 𝜑∗~𝑁𝑜𝑟𝑚𝑎𝑙(𝜑,*$|Σ) 368 

ii. Calculate the acceptance probability 𝜌(𝜑,*$, 𝜑∗) =369 

min �1,
?d𝜑∗e𝐷,𝐷],*$f

?d𝜑,*$e𝐷,𝐷],*$f
�	 370 
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iii. If 𝜌(𝜑,*$, 𝜑∗) > 𝑟~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) update 𝜑, = 𝜑∗ otherwise 𝜑, =371 

𝜑,*$ 372 

b. Update cluster id for a single uniformed outbreak 373 

i. Randomly select an uniformed outbreak from the set of uninformed 374 

outbreaks, all with the same probability of being selected. 375 

ii. Given the present cluster id for the chosen outbreak 𝐶B, randomly 376 

select a new cluster id from the set of all possible clusters excluding 377 

𝐶B. 378 

iii. With  𝐶: as the proposed cluster id, the proposed change to the 379 

augmented data is accepted with probability  380 

𝜌′(𝐷],*$, 𝐷]∗) = min �1,
𝑝(𝜑,|𝐷, 𝐷]∗)	
𝑝(𝜑,|𝐷, 𝐷],*$)	

|𝐶B|
|𝐶:| + 1

� 381 

Where |𝐶B| is the number of household outbreaks in 𝐶B  in the present  382 

permutation of the augmented data 𝐷],*$ and |𝐶:| is the number of 383 

household outbreaks in 𝐶:.  384 

 385 

iv. If 𝜌′(𝐷],*$, 𝐷]∗) > 𝑟′~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) update 𝐷],, 𝐷]∗ otherwise 386 

𝐷],, 𝐷],*$ 387 

  388 

The correction factor 
|R-|
|R.|h$

 is introduced into the acceptance ratio for a proposed change in 389 

cluster id because the proposal distributions are not symmetric. For an update of cluster id 390 

from CS to Cr, the proposed change is uniformly distributed over the set of all household 391 

outbreaks/cases in cluster CS that are part of the augmented dataset. Conversely the 392 

reverse move of a change of cluster id from Cr to CS is uniformly distributed over the set of 393 
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all household outbreaks/cases in cluster Cr that are part of the augmented dataset. As such, 394 

the proposal distributions are dependent on the number of uniformed household outbreaks 395 

in each cluster.  396 
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A4. Further details of the HPTS 397 

Establishing the highest probability transmission source (HPTS) 398 

Per case, we identified the transmission source that had the highest likelihood given the 399 

data and a parameter set 𝜑∗ sampled from the joint parameter posterior distribution 400 

(highest probability transmission source: HPTS). Consider a case i ,with onset date T.b. Given 401 

our assumption of a maximum latency duration of 5 days, we define a time window where 402 

potential infection could have occurred. For each day in the time window, potential sources 403 

of infection are {Ω.$, Ω.#…Ω.,} . An infection source is assigned if it gives the highest value of 404 

i's likelihood defined as “ the likelihood of i's onset date, infection date and infection source 405 

given sample parameter set 𝜑∗. 406 

 407 

We modified the likelihood to establish the most likely infection source (HPTS) for every 408 

case. For a given case i infected with RSV cluster c within group g, there are three possible 409 

sources of infection (Ω.), either a sampled housemate, a sampled neighbour or an unknown 410 

community source. The total rate of exposure is given as:  411 

𝜆.,;,3(𝑡) = 𝑆.,@(𝑡) L𝑀.,;(𝑡)D𝐻𝐻Q&76;,3,%→.(𝑡)
%C.

+	𝐶𝑜𝑚𝑚_𝑅𝑎𝑡𝑒.,3(𝑡)T												…	(𝐸𝑞	𝐴4.1) 412 

Where (as in the main text): 413 

𝑆.,@(𝑡) is the factor modifying exposure by recent group specific infection history, age and 414 

group specific shedding status at time t  415 

𝐶𝑜𝑚𝑚_𝑅𝑎𝑡𝑒.,3(𝑡) is the cluster specific community (external to the household) exposure 416 

rate.  417 

 418 
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The probability of exposure is = prob(any exposure event) * prob(exposure to cluster c) 419 

𝛼.,;,3(𝑡) = 31 − 𝑒𝑥𝑝*∑ \&,+,)(7))* 5 ∗ �
𝜆.,;,3(𝑡)

∑ 𝜆.,;,3(𝑡)3*
�												…	(𝐸𝑞	𝐴4.2) 420 

 421 

For a given source of infection Ω.  in the same household as i, the rate of exposure is given 422 

by:  423 

 424 

𝜆i&→.,;,3(𝑡) = 𝑆.,@(𝑡)2𝑀.,;(𝑡) ×	𝑃i&→. 	× 	𝜂@ 	× 	𝜓H(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝑠𝑖𝑧𝑒.) 	425 

×	𝜓I,.,53𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦i&,;,3(𝑡)5 	× 	𝑀i&,;(𝑡)6 426 

 427 

For Ω.  not in the same household as i but among the sampled individuals, the rate of 428 

exposure is given by: 429 

 430 

𝜆i&→.,;,3(𝑡) = 𝑆.,@(𝑡) *𝜀𝑔 	× 	𝜓J,&@6 ,𝐴𝑔𝑒@B89?J,.0 ×𝑀𝑖,ℎ(𝑡) 	× 	𝑃i&→. 	431 

×	𝜓I,.,5 ,𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦i&,;,3(𝑡)0 	× 	𝐾3𝑑𝑖,i& , 𝜅5 	× 	𝑀i&,ℎ(𝑡)1	 432 

 433 

For Ω.  an unknown source external to the household, the rate of exposure is given by: 434 

 435 

𝜆i&→.,;,3(𝑡) = 𝑆.,@(𝑡) *𝜀𝑔 	× 	𝜓J,&@6 ,𝐴𝑔𝑒@B89?J,.0 × 𝑓𝑐(𝑡)1 436 

 437 

The probability of transmission from a single source Ω.  at time t thus becomes:  438 

𝑃𝑟i&→.,;,3(𝑡) =
𝜆i&→.,;,3(𝑡)
𝜆.,;,3(𝑡)

												…	(𝐸𝑞	𝐴4.3) 439 

 440 
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The likelihood function 441 

The probability given in (𝐸𝑞	𝐴4.1) is calculated for a time point t = exposure time of 442 

individual i, 𝑡.J. This is not observed in the data, however, given our assumption on the 443 

latency duration, we can define a 6-day window of possibility. If case i had a shedding onset 444 

at time 𝑇.b, then the window for transmission is from day 3𝑇.b − 55 to 3𝑇.b − 05. For each 445 

day in the window, potential sources are identified based on shedding status and for each 446 

combination of infection source Ω.  and exposure date 𝑡.J, the likelihood is calculated using 447 

the formula below:  448 

 449 

𝐿(𝜑¥{𝑇.8 , 𝑡.J , Ω.}) = 𝛼.,;,3(𝑡) ∗ �� ,1 − 𝛼.,;,3(𝑡)0
7&C7&

0

� ∗ ,𝜃<(𝑇.8 − 𝑡.J)0 ∗ �
𝜆i&→.,;,3(𝑡.

J)
𝜆.,;,3(𝑡.J)

� 450 

 451 

The first part of the product is the probability of infection with cluster c at time 𝑡.J, the 452 

second part is the probability of escaping infection at any time 𝑡. ≠ 𝑡.J, the third is the 453 

probability of a latency duration of length (𝑇.8 − 𝑡.J)	and the last term is the probability of 454 

transmission from source Ω.  to i. 455 

 456 

Given the likelihood, the highest-probability-source is chosen as the infection source that 457 

gives the highest value of the likelihood.   458 
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A5. Extra results 459 

Parameter trace plots and convergence checks 460 

Three MCMC chains were run, and the burn-in point assessed for each, after which, the 461 

reminder of the three chains were combined to give the posterior estimates for the 462 

parameters presented as median and 95% credible intervals. The figures below show the 463 

evolution of the parameter value with increasing number of iterations for the model with 464 

pathogen identification at the genetic cluster level (cluster model) and at the group level 465 

(group model). 466 
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 467 

Figure A5. 1: Trace plots of parameters in the cluster model.  468 

Three chains were initiated at different parameter values and these are shown in black 469 

(Chain 1), green (Chain 2) and blue (Chain 3) lines. The x-axis shows the iteration number, 470 

while the y-axis shows the log parameter value.  471 

 472 
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 473 

Figure A5. 2: Trace plots of parameters in the group level data model.  474 

Three chains were initiated at different parameter values and these are shown in black 475 

(Chain 1), green (Chain 2) and blue (Chain 3) lines. The x-axis shows the iteration number, 476 

while the y-axis shows the log parameter value.  477 

 478 

To confirm convergence observed in the trace plots, we calculated the Gelman-Rubin-479 

Brooks statistic and the effective sample size. When using the GRB statistic, convergence is 480 

said to have occurred if the ratio of pooled/within chain variance is close to 1. The GRB 481 
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statistic assumes that the target distribution is Normal. The plot below shows the value of 482 

the GRB statistic as the number of iterations increases for each parameter. This is to check 483 

whether a value close to one was reached by chance or if the trend line had truly stabilized 484 

close to 1. 485 

 486 

 487 

Figure A5. 3: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink factor) as 488 

the number of iterations increases. 489 

Each grey line represents a model parameter in the cluster level data model and the dashed 490 

red line shows the value 1.  491 

 492 

The point estimated of the GRB and the values of the ESS after burn in are given in the table 493 

below.  494 

 495 
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Table A5. 1: The value of the GRB statistic (to 3 significant figures) and the ESS after burn-496 

in are shown for the parameters in the cluster level data model. 497 

Parameter Point estimate  

GRB statistic 

ESS 

Prev.hom 1 10607 

Prev.het 1 10073 

Curr.het 1.01 7131 

Sus.age.2 1.01 9154 

Sus.age.3 1.02 9771 

Sus.age.4 1.02 10384 

HH.rsv.a 1 9476 

HH.rsv.b 1.01 9765 

HH.size 1 10147 

Low.Sym 1.02 9987 

High.Sym 1.01 9774 

Dist.rate 1.16 10455 

Gen.rate 1.04 10436 

Comm.rsv.a 1.09 7847 

Comm.rsv.b 1.09 7823 

Exp.age.2 1 8432 

Exp.age.3 1.01 9863 

Delta 1.04 7908 

Beta 1.03 6678 
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The mGRB is 1.07 and the mESS is 10008. 498 

 499 

 500 

Figure A5. 4: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink factor) as 501 

the number of iterations increases. 502 

Each grey line represents a model parameter in the group level data model and the dashed 503 

red line shows the value 1.  504 

 505 

Table A5. 2: The value of the GRB statistic (to 3 significant figures) and the ESS after burn-506 

in are shown for the parameters in the group level data model. 507 

Parameter Point estimate 

 GRB statistic 

ESS 

Prev.hom 1.01 3713 

Prev.het 1.02 3978 

Curr.het 1.07 2309 
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Sus.age.2 1.02 2998 

Sus.age.3 1.03 3617 

Sus.age.4 1.04 3694 

HH.rsv.a 1.01 3426 

HH.rsv.b 1.01 3361 

HH.size 1.02 3673 

Low.Sym 1.04 3957 

High.Sym 1.03 3744 

Dist.rate 1.07 3374 

Comm.rsv.a 1.05 4069 

Comm.rsv.b 1.05 4093 

Exp.age.2 1.02 2858 

Exp.age.3 1.02 3476 

Delta 1.04 5331 

Beta 1.04 3873 

The mGRB is 1.09 and the mESS is 4146. 508 

 509 

As a rule of thumb, a GRB of <1.1 is generally considered good, as such, it is safe to conclude 510 

that there was convergence.  511 

 512 

 513 



 34 

Table A5. 3: Median and 95% credible intervals for parameters estimated using the model 514 

with sequence data. 515 

Symbol Description Name Median (95% 

Credible interval) 

𝝓𝒀 Coefficients modifying susceptibility 

to infection by a particular RSV 

group depending on infection 

history. Prev.hom estimates the 

effect of a previous homologous 

group infection, and Prev.het the 

effect of a previous heterologous 

infection 

Prev.hom 

Prev.het 

0.4328 (0.2665, 

0.6727) 

0.5126 (0.2601, 

0.8985) 

𝝓𝑾 Coefficient modifying susceptibility 

to a particular RSV group based on 

shedding status of the heterologous 

group type 

Curr.het 0.9520 (0.2494, 

2.262) 

𝝓𝑿 Coefficients modifying susceptibility 

to RSV by age. Sus.age.2 estimates 

modification to group 1-4 years, 

Sus.age.3 5-15 years and Sus.age.4 

≥15 years relative to group <1 year. 

Sus.age.2 

Sus.age.3 

Sus.age.4 

0.8804 (0.4997, 

1.616) 

0.2741 (0.1591, 

0.4946) 

0.1562 (0.08867, 

0.2852) 
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𝜼𝒈 Baseline rate of within household 

exposure by RSV group, per person 

per day. 

HH.rsv.a 

HH.rsv.b 

0.02360 (0.0119, 

0.04361) 

0.02272 (0.01120, 

0.04196) 

𝝍𝑯 Coefficient modifying the amount of 

within household exposure by 

household size for households of 8 

or more relative to <8. 

HH.size 0.4457 (0.2892, 

0.6843) 

𝝍𝑰 Coefficients modifying 

infectiousness by viral load and 

symptom status. Relative to being 

asymptomatic, Low.Sym estimates 

the effect of shedding low viral load 

and being symptomatic and 

High.Sym the effect of shedding high 

viral load and being symptomatic 

Low.Sym 

High.Sym 

2.1 (1.214, 3.67) 

4.437 (1.8, 8.959) 

𝜿 The rate of exponential decay on the 

spatial distance kernel 

Dist.rate 207.7  (7.819, 

169100) 

𝝑 The rate of exponential decay on the 

genetic weight function.  

Gen.rate* 0.0002631 

(0.000001027, 

0.003817) 
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𝜺𝒈 Baseline rate of community 

exposure by RSV group, per person 

per day. 

Comm.rsv.a 

Comm.rsv.b 

0.0003091 

(0.0001198, 

0.0008682) 

0.0003849 

(0.0001525, 

0.001072) 

𝝍𝑬 Coefficients modifying the rate of 

community exposure by age group. 

Exp.age.2 for 1-4 years and 

Exp.age.3 for ≥5 years, relative <1 

year  

Exp.age.2 

Exp.age.3 

0.5311 (0.2179, 

1.221) 

1.64 (0.7705, 

3.386) 

𝜹, 𝜷 Parameters for the cluster specific 

background community function.  

Delta 

Beta 

1.58 (0.5466, 

4.693) 

0.1929 (0.08315, 

0.7321) 

  516 
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A6. Model validation 517 

To validate the model, we simulated multiple epidemics and checked to see if the observed 518 

epidemic was captured by the range of simulated dynamics. In addition to comparing the 519 

time course of cases, we also looked at the total number of cases in an epidemic, the 520 

proportion of individuals with multiple onsets and the number of cases in the first and last 521 

week of the time period. These values from the data were compared to the range of 522 

simulated values to check that key aspects of the epidemic were being reproduced by the 523 

simulations.  524 

 525 

The results of the model fitting are the posterior parameter distribution and corresponding 526 

augmented data for the cluster ids of cases with no genetic information. A simulation based 527 

on a set of parameter values will also be based on the corresponding augmented data which 528 

will be used to derive a complete set of shedding profiles from the observed data. A single 529 

shedding profile is a combination of duration of shedding, viral loads and symptom status, 530 

and genetic cluster. The simulation pseudo code per simulation is as follows:  531 

 532 

1. Initiate system such that everyone one is susceptible to RSV.  533 

2. At every time step keep track of the following variables:  534 

a. Exposure status (by RSV cluster) 535 

b. Shedding status by group 536 

c. Shedding status by genetic cluster 537 

d. Infectiousness status (combination of viral load and symptom status) 538 

e. Infection history (by RSV group) 539 

f. The background rate of exposure from the community 540 
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3. At every time step: 541 

a. Update the background community function to reflect any new shedding 542 

onsets 543 

b. Calculate the cluster specific rate of exposure, 𝜆.,;,3(𝑡), as defined in the 544 

main text. 545 

c. Determine the number of group specific transmission events 𝐸@ where  546 

𝐸@ = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛� D 𝑃J#,.
.∈F0#

� 547 

𝑆J#  = set of all individuals susceptible to infection event Eg. 548 

𝑃J#,.  = probability of person i experiencing event Eg 549 

𝑃J#,. = D §31 − 𝑒𝑥𝑝*∑ \&,+,)(7))* 5 ∗ �
𝜆.,;,3(𝑡)

∑ 𝜆.,;,3(𝑡)3*
�¨	

3	_	3<9:76B:	
.,	@

 550 

Where 𝜆.,;,3(𝑡)= rate at which person i is exposed to infection of 551 

cluster type C. 552 

d. Given the number of group specific transmission events, determine the 553 

cluster id of each through weighted sampling. E.g. if Eg = 4 and c = {1,2,3} are 554 

the cluster ids in the group, the probability of a case being any one if the 555 

three clusters is: 556 

�
𝜆;,$(𝑡)

∑ 𝜆;,3(𝑡)3*
,
𝜆;,#(𝑡)

∑ 𝜆;,3(𝑡)3*
,
𝜆;,!(𝑡)

∑ 𝜆;,3(𝑡)3*
� , 𝑓𝑜𝑟	𝜆;,$(𝑡) = D𝜆.,;,3(𝑡)

.

	 557 

e. Determine who experiences each cluster specific transmission event. For a 558 

given event, order individuals capable of experiencing the event. For a given 559 

person p to experience the event, the following inequality has to be satisfied. 560 

 561 
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D 𝑃J),.

.j?*$

._$

	< �𝑅𝐴𝑁𝐷	 × D 𝑃J),.
.	∈F0)

� 	≤ 	D𝑃J),.

.j?

._$

 562 

 Where: 563 

 	564 

𝑃J),. = 31 − 𝑒𝑥𝑝*∑ \&,+,)(7))* 5 ∗ �
𝜆.,;,3(𝑡)

∑ 𝜆.,;,3(𝑡)3*
� 565 

𝑆J)  = all individuals susceptible to infection of cluster type c. 566 

RAND = a random number between (but not including) 0 and 1.  567 

 568 

This is illustrated in the figure below. 569 

 570 

 571 

Repeat this until the required number of events 572 

 573 

f. For each individual experiencing a transmission event, assign a latency 574 

duration and shedding profile by sampling from the relevant empirical 575 
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distributions. The empirical latency distribution is the same as was used in 576 

estimating the parameters and is homogeneous for every individual. 577 

Shedding profiles are derived from the observed data and a combination of 578 

duration of shedding, viral loads and symptom status, and genetic cluster. 579 

The shedding profiles are grouped by age in the following 4 groups <1,1-5, 5-580 

15 and ≥15 years. Once latency durations and shedding profiles have been 581 

assigned, the state variables for each individual are updated accordingly.  582 

 583 

To explore how much variation there can be in the simulations from a single parameter set, 584 

a set of 12 parameter set samples were used, and for each set, 100 simulations were run, 585 

giving a total of 1200 simulations. We then sampled 100 parameter sets and run single 586 

simulations from each to explore between-parameter-set variation. The results of the 587 

simulations are presented in the form of epidemic curves and summary measures that are 588 

used to compare the main features of the outbreak.  589 

 590 
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 591 

Figure A6. 1: A comparison of simulated and observed data for RSV A.   592 

Each panel shows the results of 100 simulations from a single parameter set. The grey lines 593 

show the simulated data while the black lines show the observed data. Time is shown on the 594 

x-axis while the y-axis shows the total number of people who are shedding at a given point 595 

in time.  596 
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 597 

Figure A6. 2: A comparison of simulated and observed data for RSV B.   598 

Each panel shows the results of 100 simulations from a single parameter set. The light blue 599 

lines show the simulated data while the dark blue lines show the observed data. Time is 600 

shown on the x-axis while the y-axis shows the total number of people who are shedding at 601 

a given point in time.  602 

 603 
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 604 

Figure A6. 3: Violin plots showing the distribution of the total number of people infected 605 

in the simulations by RSV group and age. 606 

Each panel shows the distribution of the total numbers infected in the simulations run using 607 

12 different parameter sets (violin plots) compared to the total number from the observed 608 

data (dashed red line). The y-axis shows the total number and the x-axis is labeled by 609 

parameter set used. Top row: RSV A results for all the cases (1st column), cases < 1 year old 610 

(2nd column), cases between 1-5 years old (3rd column) and cases > 5 years old (4th column). 611 

Bottom row: RSV B results. Violin plots are a combination of box plots and density 612 

distributions, the shapes should therefore be interpreted as density plots would while the 613 

ranges should be interpreted as the tips of whiskers in a box and whisker plots.  614 
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 616 

Figure A6. 4: Violin plots showing the distribution of the proportion of cases that had 617 

multiple onsets in the simulations by RSV group and age.  618 

Each panel shows the distribution of the proportion of cases that had multiple onsets in the 619 

simulations run using 12 different parameter sets (violin plots) compared to the proportion 620 

from the observed data (dashed red line). The y-axis shows the proportion and the x-axis is 621 

labeled by parameter set used. Top row: RSV A results for all the cases (1st column), cases < 622 

1 year old (2nd column), cases between 1-5 years old (3rd column) and cases > 5 years old (4th 623 

column). Bottom row: RSV B results.  624 
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 626 

Figure A6. 5: Violin plots showing the distribution of the number of cases in the first (1st 627 

column) and last (2nd column) week of the observation/simulation period in the 628 

simulations by RSV group.  629 

The y-axis shows the total number of people infected and the x-axis is labeled by parameter 630 

set used. The dashed red line shows what was observed in the data, i.e. there were no cases 631 

observed in the first and last week of the 180-day observation period.   632 
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A7. Model modification to fit pathogen data identified at group resolution  633 

The null model is similar in structure to the model of sequence data presented in the main 634 

text, however, there is no identification of the infecting pathogen at the cluster level, only at 635 

the group level. The rate of exposure to a particular RSV cluster g acting on a susceptible 636 

person i from household h at time t: 637 

 638 

𝜆.,;,@(𝑡) = 𝑆.,@(𝑡) L𝑀.,;(𝑡)D𝐻𝐻Q&76;,@,%→.(𝑡)
%C.

+	𝐶𝑜𝑚𝑚_𝑅𝑎𝑡𝑒.,@(𝑡)T													… (𝐸𝑞	𝐴7.1) 639 

Where: 640 

𝑆.,@(𝑡) is the factor modifying exposure by recent group specific infection history, age and 641 

group specific shedding status at time t given by: 642 

 643 

𝑆.,@(𝑡) = exp ,𝜙D,;.:73𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛_𝐻𝑖𝑠𝑡𝑜𝑟𝑦.(𝑡)5 +	𝜙E,&@63𝐴𝑔𝑒_𝑔𝑟𝑜𝑢𝑝F,.5644 

+ 𝜙G,39BB3𝑆ℎ𝑒𝑑𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑢𝑠.(𝑡)50 645 

 646 

𝐻𝐻_𝑅𝑎𝑡𝑒;,@,%→.(𝑡) is the group specific within household exposure rate given by:  647 

 648 

𝐻𝐻_𝑅𝑎𝑡𝑒;,@,%→.(𝑡)649 

=	𝜂@ 	× 	𝜓H(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝑠𝑖𝑧𝑒.) 	× 	𝜓I,.,53𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦%,;,@(𝑡)5 	× 	𝑀%,;(𝑡) 650 

 651 

𝐶𝑜𝑚𝑚_𝑅𝑎𝑡𝑒.,@(𝑡) is the cluster specific community (external to the household) exposure 652 

rate given by: 653 
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𝐶𝑜𝑚𝑚_𝑅𝑎𝑡𝑒.,@(𝑡)654 

= 𝜀𝑔 	655 

×	𝜓J,&@63𝐴𝑔𝑒_𝑔𝑟𝑜𝑢𝑝J,.5

⎝

⎜⎜
⎛

⎝

⎜
⎛
𝑀𝑖,ℎ(𝑡) D 𝑆𝑎𝑚𝑝𝑙𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟_𝑅𝑎𝑡𝑒;,@,%→.(𝑡)

𝑗≠𝑖,			𝑗	𝑛𝑜𝑡	𝑖𝑛
	𝑖′𝑠	ℎ𝑜𝑢𝑠𝑒 ⎠

⎟
⎞
	656 

+	𝑓𝑔(𝑡)

⎠

⎟⎟
⎞

 657 

Where: 658 

 659 

𝑆𝑎𝑚𝑝𝑙𝑒𝑑_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟_𝑅𝑎𝑡𝑒;,@,%→.(𝑡) = 𝜓𝐼,𝑔,𝑗(𝑡) 	× 	𝐾3𝑑𝑖,𝑗, 𝜅5 	× 	𝑀𝑗,ℎ(𝑡) 660 

 661 

The background function 𝑓1(𝑡) is derived the same way 𝑓/(𝑡) is, as described in the main text. 662 

Since we do not use genetic distances in this version of the model, we do not estimate 𝜗 for  663 

𝑃%→. = 𝑒𝑥𝑝*/#$%(.,%)∗2 or  𝑃%→. = 1	𝑖𝑓	𝑑@6,(𝑖, 𝑗) 	≤ 𝜗, 0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, making the total 664 

number of parameters 17. 665 

 666 

Following from the rate of exposure is the probability of exposure give by: 667 

𝛼.,;,@(𝑡) = 31 − 𝑒𝑥𝑝*\&,+,#(7)5													… (𝐸𝑞	𝐴7.2) 668 

 669 

 670 

The probability of onset is given as: 671 

𝑝.,;,@(𝑡) =D𝜃<𝛼.,;,@(𝑡 − 𝑙)
^

<_`

													… (𝐸𝑞	𝐴7.3) 672 
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Where L is the maximum latency period and 𝜃<  is the probability that the latency period is 673 

exactly 𝑙 days.  674 

 675 

The likelihood for individual i's data is given as: 676 

𝐿. =	�L � 𝑝.,;,@(𝑢)
9∈k&,+,#

� 31− 𝑝.,;,@(𝑎)5
&∈]&,+,#

T
@

 677 

The total likelihood is thus given by the product of 𝐿.  over all the individuals in the data 678 

 679 

𝐿 = 	�L�L � 𝑝.,;,@(𝑢)
9∈k&,+,#

� ,1− 𝑝.,;,@(𝑎)0
&∈]&,+,#

T
@

T
.

 680 

  681 
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