1	Supplementary material
2	
3	Integrating epidemiological and genetic data with different sampling
4	densities into a dynamic model of respiratory syncytial virus (RSV)
5	transmission.
6	
7	Ivy K. Kombe ^{1,2} ,Charles N. Agoti ¹ , Patrick K. Munywoki ¹ , Marc Baguelin ³ , D. James Nokes ⁴ ,
8	Graham F. Medley ²
9	
10	¹ KEMRI-Wellcome Trust Research Programme, KEMRI Centre for Geographical Medical
11	Research-Coast. P.O. Box 230-80108, Kilifi, Kenya.
12	² Centre for Mathematical Modelling of Infectious Disease and Department of Global Health
13	and Development, London School of Hygiene and Tropical Medicine. London, WC1H 9SH,
14	United Kingdom.
15	³ Centre for Mathematical Modelling of Infectious Disease and Department of Infectious
16	Disease Epidemiology, London School of Hygiene and Tropical Medicine. London, WC1H
17	9SH, United Kingdom.
18	⁴ School of Life Sciences and Zeeman Institute for Systems Biology & Infectious Disease
19	Epidemiology Research, University of Warwick. Coventry, CV4 7AL, United Kingdom.
20	
21	Correspondence: Ivy K. Kombe (ivkadzo@gmail.com)

22 Table of contents

23	A1. Data pre-processing
24	Imputing complete shedding, ARI and presence durations
25	Imputing missing genetic information6
26	A2. Further details of the transmission model9
27	The rate of exposure
28	The background community function12
29	The Likelihood17
30	A3. Further details of the adaptive MH-MCMC algorithm19
31	Choice of proposal distributions for the parameters
32	Pseudo algorithm for our implementation of MH-MCMC21
33	A4. Further details of the HPTS24
34	Establishing the highest probability transmission source (HPTS)24
35	A5. Extra results27
36	Parameter trace plots and convergence checks
37	A6. Model validation
38	A7. Model modification to fit pathogen data identified at group resolution46
39	A8. References
40	

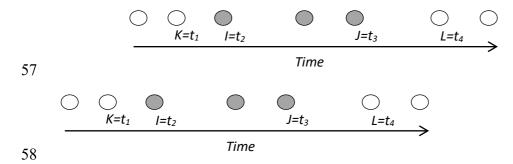
41 A1. Data pre-processing

42 Imputing complete shedding, ARI and presence durations.

Given the 3-4 day sampling intervals, complete shedding and ARI durations had to be imputed, and missing viral loads linearly interpolated. For the model, we will assume that all the cases were observed, and ignore the possibility of short duration shedding episodes that could have been missed by the sampling intervals. During the sample-collection visits, if a household member was not present, they were recorded as being 'away' on that particular day. As with the shedding information, there was incomplete information on continuous periods of presence or absence from the household which was also imputed.

An RSV A/B shedding episode is defined as a period within which an individual provided PCR positive samples for RSV A/B that were no more than 14 days apart. Using the mid-point method, shedding was assumed to start mid-way between the last negative sample and the first positive sample, and it ended midway between the last positive sample and the first negative sample of an episode. This is illustrated below:

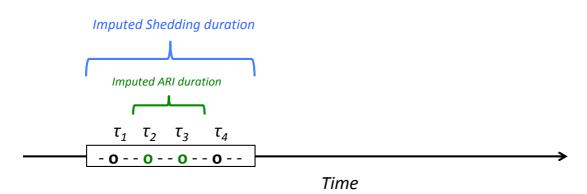
56



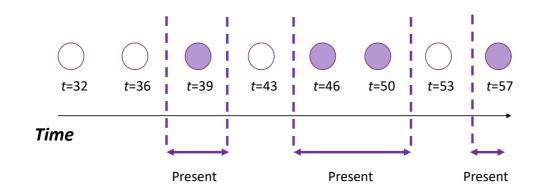
59 Grey circles are positive samples in a single episode, empty circle are negative. t_1 , t_2 , t_3 and t_4

60 are dates of sample collection.

62	For (t_4-t_3) and $(t_2-t_1) \le 7$ days
63	Duration = $\left[t_3 + {\binom{t_4 - t_3}{2}}\right] - \left[t_2 - {\binom{t_2 - t_1}{2}}\right]$
64	For (<i>t</i> ₄ - <i>t</i> ₃)>7
65	Duration = $[t_3 + (x/2)] - [t_2 - (t_2 - t_1/2)]$: Right censoring
66	For (<i>t</i> ₂ - <i>t</i> ₁) >7
67	Duration = $\left[t_3 + {\binom{t_4 - t_3}{2}}\right] - \left[t_2 + {\binom{x}{2}}\right]$: Left censoring
68	Where x = mean of sampling intervals for samples in an episode, which was found to be 3.45
69	days.
70	Any negative samples (Ct >35 or Ct=0) in between a shedding episode were ignored, i.e.
71	were not treated like true end of shedding
72	
73	We imputed complete ARI episodes from intervals of recorded ARI. A virus shedding
74	episode that had no day where an ARI was reported was assumed to be asymptomatic. For
75	a virus shedding episode with at least one day of recoded ARI, the duration of symptoms
76	was imputed using the midpoint method described for shedding episodes. This is illustrated
77	below:



79	Green open circles are reported ARI symptoms (ARI positive) within the shedding episode
80	and black open circles are confirmed absence of ARI (ARI negative). τ_1 , τ_2 , τ_3 and τ_4 are days
81	within the shedding episode where information on symptoms was collected.
82	
83	In this case, the mean sampling interval for ARI 'samples' within an episode was 3.78 days.
84	This was obtained from all ARI episodes not just the ones within shedding episodes
85	
86	The imputation of continuous periods of presence or absence from the household was done
87	similar to the imputation of shedding durations, however, there was no left or right
88	censoring. Each participant had a set of days of recorded data, these days were either
89	marked as 'away' or 'present' in the household, e.g. a participant might have data on days
90	{32, 36, 39, 43, 46, 50, 53, 57} with status {away, away, present, away, present, present,
91	away, present}. Since no data is available for this individual before day 32 and after day 57,
92	no imputation is done outside this time window. For the days within the window,
93	imputation is done as illustrated below:
94	



96 Filled circles are days when the participant was recorded as being present while open ones is

97 when they were away. The present period starts halfway between the last 'away' and first

'present' and ends halfway between the last 'present' and first 'away'.

99	In order to include information of the amount of virus shed by an infected person into the
100	transmission model, the Ct value need to be converted to log_{10} RNA copy number which is a
101	more direct measure of viral load. The formula used to convert Ct values to their \log_{10} RNA
102	equivalent was $y = -3.308x + 42.9$, where $y = Ct$ values and $x = \log_{10} RNA$ copy number[1,2].
103	Following conversion of the PCR Ct values to viral load, we proceeded to interpolate the
104	viral loads for days in an episode that did not have data. Linear interpolation was used for all
105	the shedding episodes. It was assumed that the starting and ending sample, if data was
106	missing, had a viral load of 2.388 log_{10} RNA (baseline positive Ct value converted to viral
107	load). For two samples of viral load V_a and V_b at times t_a and t_b , $t_b > t_a$, the gap in between is
108	filled out as follows:
109	For $t_b - t_a = n$, viral load V_j at time point t_j for j=1(n-1) is given by
110	$V_j = V_a + \frac{j \left(V_b - V_a \right)}{n}$
111	Viral loads lower than 2.388 log_{10} RNA in between an episode were not included in the
112	interpolation
112 113	interpolation
	interpolation Imputing missing genetic information
113	
113 114	Imputing missing genetic information
113114115	Imputing missing genetic information The WGS data was used to rule out transmission events where it was assumed that cases in
113114115116	Imputing missing genetic information The WGS data was used to rule out transmission events where it was assumed that cases in different genetic clusters are not part of the same transmission cluster. It was also assumed
 113 114 115 116 117 	Imputing missing genetic information The WGS data was used to rule out transmission events where it was assumed that cases in different genetic clusters are not part of the same transmission cluster. It was also assumed that for cases within the same genetic cluster, the likelihood of a transmission event is

121 divergence. As a result of incomplete sequencing of all the positive samples, there are gaps

in the genetic data. To fill these in we classified missingness into 3 categories and exploitedelements of the study design to fill in the gaps.

124 Missing level 1: non-sequenced samples part of an infection episode with ≥ 1 other 125 sequenced sample. The entire episode was assigned the cluster id of the sequenced 126 sample(s), where there was more than 1 id, the episode was divided accordingly. 127 Missing level 2: none of the samples in an episode were sequenced, but the episode 128 is part of a spatial-temporal cluster with some genetic information. The entire 129 episode was assigned the cluster id of the spatial-temporal cluster. This assumes that 130 if an episode has a temporal overlap with other cases in the same household, they 131 are likely part of the same infection cluster (household outbreak). 132 Missing level 3: none of the samples in an episode were sequenced and there is no 133 genetic information in the social-temporal cluster. The cluster id for the entire 134 episode was treated as augmented data and inferred along with the model 135 parameters. 136 Within a given RSV group, infection by a particular cluster is assumed to be a mutually

exclusive process, an individual can only shed one cluster type at a time. The genetic data
available is consensus whole genome sequences as such, only one cluster can be identified
from a single sample.

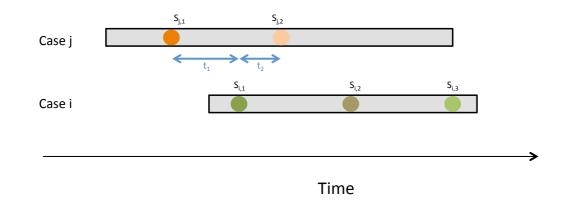
140

141 Consider a *case i* who had an onset after *case j*, both of whom have sequences. The genetic 142 distance between case *i* and *j* is obtained by comparing the first sequence available from 143 case *i* and any sequence from *j* whose sampling time is closest to the first sequence from *i*. 144 In the illustration below, this would mean comparing sequence $S_{i,1}$ to $S_{j,2}$ to obtain genetic 145 distance $d_{gen}(i,j)$. The phylogenetic analysis of *Agoti et al* [3] found that long shedding

146 episodes do not have drastically differing genetic sequences (<6 SNPs) as such it should not

147 make a significant difference whether we compare sequences forward (*S*_{*i*,1} to *S*_{*j*,2}) or

- 148 backward ($S_{i,1}$ to $S_{j,1}$) in time.
- 149



150

151

If either one or both of the cases do not have sequences, then $d_{gen}(i,j)$ is randomly selected 152 153 from the set of all pair-wise genetic distances from the specific genetic cluster. For cases 154 with sequence data, *d_{gen}(i,j)* is fixed, but for cases where one or both is missing sequences, 155 **d**_{gen}(**i**,**j**) changes every time the likelihood is calculated to reflect uncertainty. In this way 156 only pairs of cases with sequence data contribute definitive genetic information to the 157 parameter inference algorithm while the rest will not. We use nucleotide differences as the 158 distance $d_{gen}(i,j)$. Once we have $d_{gen}(i,j)$, we then use this to obtain a genetic weight for the probability of a transmission event given by $P_{j \to i} = exp^{-d_{gen}(i,j)*\vartheta}$ where ϑ is the rate of 159 exponential decay and is estimated along with other model parameters. This function form 160 161 results in a negative exponential relationship between the genetic weight and the genetic 162 distance between a pair of cases.

163 A2. Further details of the transmission model

164 The rate of exposure

165 In our model, an individual can get infected by someone they share a household with or

166 from a source outside the household, resulting in a two-component rate of exposure: a

167 within household exposure component and a community exposure component.

 $\lambda_{i,c}(t) = [baseline household rate of exposure * number of infectious household contacts(t)]$

+

168

[baseline community rate of exposure * number of infectious community contacts(t)]

169
$$\lambda_{i,c}(t) = \left(\eta * \sum_{\substack{j \in infectious \\ household \\ contact}} I_{j,c}(t)\right) + \left(\varepsilon * \sum_{\substack{j \in infectious \\ community \\ contact}} I_{j,c}(t)\right)$$

170

171 The number of infectious household contacts is observed in the data. Though there are 172 cases from different households in the data, the sample in the study is small relative to the 173 number of households in the community, as such the true number of infectious community 174 contacts is unknown. We further split the community rate of exposure into two 175 components: exposure from sampled neighbours and exposure from unknown sources 176 represented by a time varying function $f_c(t)$. We assumed that the rate of exposure from a 177 sampled neighbour is dependent on the spatial distance between individuals. The per capita 178 rate of exposure now takes the form:

 $\lambda_{i,c}(t) = [baseline household rate of exposure * number of infectious household contacts(t)]$

+

*{baseline community rate of exposure * [number of infectious neighbour contacts(t) +*

background community function(t)]}

179 180

181
$$\lambda_{i,c}(t) = \left(\eta * \sum_{\substack{j \in infectious \\ household \\ contact}} I_{j,c}(t)\right) + \varepsilon * \left(\left(\sum_{\substack{j \in infectious \\ sampled \\ neighbour \\ contact}} I_{j,c}(t)\right) + f_c(t) \right)$$

182

183 We extended this basic formulation to include our assumptions on RSV natural history and 184 explore factors that could influence the rate of exposure such as household size. In detail, 185 we present the model by specifying the rate of exposure to a particular RSV cluster *c* acting 186 on a susceptible person *i* from household *h* at time *t*, denoted $\lambda_{i,h,c}(t)$ as:

187

188
$$\lambda_{i,h,c}(t) = S_{i,g}(t) \left[M_{i,h}(t) \sum_{j \neq i} HH_Rate_{h,c,j \to i}(t) + Comm_Rate_{i,c}(t) \right] \dots (Eq \ A2.1)$$

189 Where:

190 $S_{i,g}(t)$ is the factor modifying exposure by recent group specific infection history, age and 191 group specific shedding status at time **t** given by:

193
$$S_{i,g}(t) = \exp\left(\phi_{Y,hist}\left(Infection_History_i(t)\right) + \phi_{X,age}\left(Age_group_{S,i}\right)\right)$$

194
$$+ \phi_{W,curr}(Shedding_status_i(t)))$$

195 $HH_Rate_{h,c,i \rightarrow i}(t)$ is the cluster specific within household exposure rate from infectious 196 197 individual *j* present in the household at time *t*, and is given by: 198 199 $HH_Rate_{h,c,i \rightarrow i}(t)$ $= \eta_g \times \psi_H(Household_size_i) \times \psi_{I,inf}(Infectivity_{j,h,c}(t)) \times M_{j,h}(t)$ 200 201 $Comm_Rate_{i,c}(t)$ is the cluster specific community (external to the household) exposure 202 203 rate given by: 204 205 $Comm_Risk_{i,c}(t)$ 206 $= \varepsilon_a$ $\times \psi_{E,age} (Age_group_{E,i}) \left(\left(M_{i,h}(t) \sum_{\substack{j \neq i, j \text{ not } in \\ i \text{ 's house}}} Sampled_Neighbour_Risk_{h,c,j \rightarrow i}(t) \right) \right)$ 207 $+ f_c(t)$ 208 209 Where:

- 210 Sampled_Neighbour_Risk_{h,c,i \to i}(t) is the cluster specific exposure rate from sampled
- 211 infectious individual *j* present in a neighbouring household at time *t*, and is given by:

212 Sampled_Neighbour_Risk_{h,c,j \to i}(t) = $\psi_{I,inf}(Infectivity_{j,h,c}(t)) \times K(d_{i,j},\kappa) \times M_{j,h}(t)$

213 The parameter κ is the rate of exponential decay for the spatial distance kernel given by

214
$$K(d_{i,j},\kappa) = e^{-\kappa \cdot d_{i,j}}$$

215 The background community function

We defined a background cluster-specific rate of exposure, $f_c(t)$, which affects susceptible individuals outside their household. This background function allows for introduction of new transmission clusters. The function form for a cluster **c** at time **t** is given as

219
$$f_c(t) = \delta + \sum_{\substack{i \text{ shedding}\\ RSV \ cluster \ c}} e^{(t-\tau_{i,c})\beta}$$

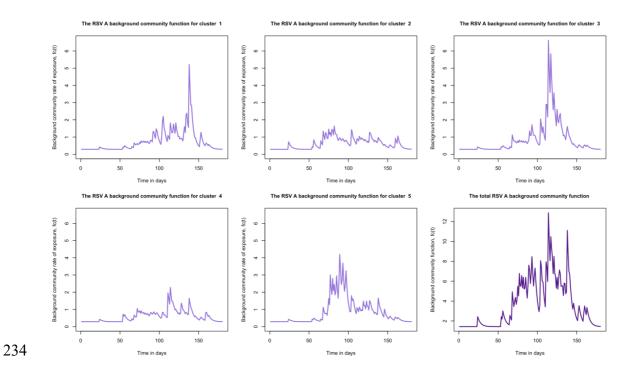
220 Where δ is the basic risk prior to any observed onsets and β is the rate of exponential decay 221 related to the time since onset of a case shedding cluster type c, β is a measure of the rate 222 at which the cluster might disappear from the community and $\tau_{i,c}$ is the onset time of RSV 223 cluster type **c** by person **i**. The parameters δ and β are not cluster or group specific. The sum 224 of the cluster specific curves has to add up to the group specific curve, otherwise using 225 clusters could lead to an over or under representation of the background community exposure rate. To ensure that $\sum f_c(t) = f_q(t)$ we need to normalize the cluster level curves 226 227 such that their sum adds up to the group level curve. The equation for the normalized function $\hat{f}_c(t)$ is given as: 228

229
$$\hat{f}_{c}(t) = \left(\delta + \sum_{\substack{i \text{ shedding} \\ RSV \text{ cluster } c}} e^{(t-\tau_{i,c})\beta}\right) \times \left(\sum_{c \in C'} \left(\delta + \sum_{\substack{i \text{ shedding} \\ RSV \text{ cluster } c}} e^{(t-\tau_{i,c})\beta}\right)\right)$$

230 Where C' is the set of all clusters in a given RSV group.

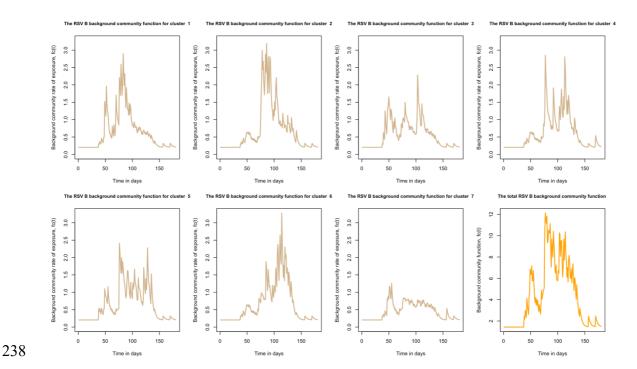
231

An example of the shapes of the background community rate of exposure curves is shown in
Figure A2. 1 for the 5 clusters in RSV A and Figure A2. 2 for the 7 clusters in RSV B.



235 Figure A2. 1: The background cluster-specific rate of exposure curves for RSV A. The

236 normalized $f_c(t)$ curves are shown for the 5 different clusters and the group.



239 Figure A2. 2: The background cluster-specific rate of exposure curves for RSV B. The

normalized $f_c(t)$ curves are shown for the 7 different clusters and the group.

- Table A2. 1 lists all the parameters in the model and gives a brief description. Despite
- 242 identifying the infection pathogen at the cluster level, we do not have any cluster-specific
- 243 parameters in the model.
- 244

245 Table A2. 1: Model parameters and their descriptions

Parameter	Parameter	Description
(symbol)	(name)	
ϕ_{Y}	Prev.hom,	Coefficients modifying susceptibility to infection by a
	Prev.het	particular RSV group depending on infection history.
		Prev.hom estimates the effect of a previous homologous
		group infection, while Prev.het estimates the effect of a
		previous heterologous group infection
ϕ_X	Sus.age.2,	Coefficients modifying susceptibility to RSV depending on
	Sus.age.3,	age. <i>Sus.age.2</i> estimates the effect being in age group 1-4
	Sus.age.4	years, Sus.age.3 the effect of group 5-14 and Sus.age.4 of
		group ≥15 relative to group <1 year.
ϕ_W	Curr.het	Coefficient modifying susceptibility to a particular RSV
		group based on shedding status of the heterologous group
		type
η_g	HH.rsv.a,	Baseline rate of within household exposure by RSV group,
	HH.rsv.b	per person per day.
ψ_{H}	HH.size	Coefficient modifying the amount of within household
		exposure by household size. HH.size estimates the effect

		of being in a large household(>8 inhabitants) relative to a
		small one
θ	Gen.rate	For $P_{j \rightarrow i} = exp^{-d_{gen}(i,j)*\vartheta}$ the genetic distance kernel
		giving the genetic weight on probability of transmission,
		Gen.rate is the rate of exponential decay.
ψι	Low.Sym	Coefficients modifying infectiousness by viral load and
	High.Sym	symptom status. Relative to being asymptomatic,
		Low.Sym estimates the effect of shedding low viral load
		and being symptomatic and High.Sym the effect of
		shedding high viral load and being symptomatic
ϵ_g	Comm.rsv.a	Baseline rate of community exposure by RSV group, per
	Comm.rsv.b	person per day.
ψ_{E}	Exp.age.2	Coefficients modifying the rate of community exposure by
	Exp.age.3	age group. <i>Exp.age.2</i> estimates the effect being in age
		group 1-4 years and <i>Exp.age.3</i> the effect of group ≥ 5 ,
		relative to the <1-year age group
к	Dist.rate	The rate of exponential decay for the spatial distance
		kernel given by $K(d_{i,j},\kappa) = e^{-\kappa * d_{i,j}}$
δ, β	Delta,	For the cluster specific background community function
	Beta	given by
		$f_c(t) = \delta + \sum_{\substack{i \text{ shedding} \\ RSV \text{ cluster } c}} e^{(t-\tau_{i,c})\beta}$

	$Delta(\delta)$ is the basic risk and $Beta(\beta)$ is the rate of
	exponential decay related to the time since onset of a
	case shedding cluster type <i>c</i> .

- 247 Following from the rate of exposure is the probability of exposure to cluster c given an
- 248 exposure event has occurred, expressed as:
- 249 Probability of exposure = prob(any exposure event) * prob(exposure to cluster c)

250
$$\alpha_{i,h,c}(t) = \left(1 - exp^{-\sum_{C'}\lambda_{i,h,c}(t)}\right) * \left(\frac{\lambda_{i,h,c}(t)}{\sum_{C'}\lambda_{i,h,c}(t)}\right) \qquad \dots \ (Eq \ A2.2)$$

251

- 252 Where *C*' is the set of all clusters in a given RSV group.
- This formulation factors in the fact that on any given day, an individual can only be shedding virus from a single cluster, in the respective group. The clusters are therefore competing for susceptible hosts. Exposure events are mutually exclusive and distributed according to a multinomial distribution. We thus have

257
$$\left[prob(no \ exposure) + \sum_{All \ clusters} prob(exposure \ to \ cluster \ c) \right] = 1$$

258

259

Assuming that the duration of latency can range from 0 to 5 days with probabilities [0,
0,0.33,0.33,0.25,0.083] [4], we then have the following probability of onset at time *t* given
no onsets or shedding until *t*:

263
$$p_{i,h,c}(t) = \sum_{l=0}^{L} \theta_l \alpha_{i,h,c}(t-l) \qquad \dots \ (Eq \ A2.3)$$

264 Where L is the maximum latency period and θ_l is the probability that the latency period is

265 exactly *l* days. In this way, the genetic clusters are used together with the spatial/social

266 clusters (households) and the latency distribution (which implicitly works based on temporal

267 clusters) to make joint inference on transmission parameters.

268

269 The Likelihood

270 Since the model is focused on the determinants of infection onset process, the data whose

271 likelihood we are interested in is the onset data. Given the model described, the likelihood

of an individual's observed cluster c data is the probability of all the onsets, and days of no

273 onsets where the individual was at risk of infection, i.e. not shedding RSV cluster c. For a

particular cluster, this follows a Bernoulli distribution with probability $p_{i,h,c}(u)$.

275

276 For *i* with no onset of type *c*:

277
$$L_{i,c} = \prod_{t=1}^{l} [1 - p_{i,h,c}(t)]$$

278 Where *T* is the end of the observation period.

279 For *i* with an onset of type *c*, the likelihood is give as:

280
$$L_{i,c} = \left[\left(\prod_{u \in Onsets_{i,h,c}} p_{i,h,c}(u) \right) * \left(\prod_{a \in At_{risk_{i,h,c}}} \left(1 - p_{i,h,c}(a) \right) \right) \right]$$

In this instance, to factor in the genetic data we modify the rate of exposure given in (Eq4.1) such that:

283 $HH_Risk_{h.c.i \rightarrow i}(t)$

284
$$= \eta_g \times \psi_H(Household_size_i) \times P_{j \to i} \times \psi_{I,inf}(Infectivity_{j,h,c}(t))$$

285
$$\times M_{j,h}(t)$$

287	$Sampled_Neighbour_Risk_{h,c,j \to i}(t) = P_{j \to i} \times \psi_{l,c,j}(t) \times K(d_{i,j},\kappa) \times M_{j,h}(t)$
288	With this formulation, the genetic components of the model are dependent on the
289	epidemiological in that they are not expressed independently in the likelihood function as is
290	the case with modular approaches such as the kind implemented in the Outbreaker
291	package[5,6]. We introduce $P_{j \rightarrow i}$ into the rate of exposure equation as opposed to directly
292	into the likelihood because for a given case, we are not making direct inference on the
293	source of infection or the exact date of exposure: we consider all likely dates and sources
294	given the latency distribution.
295	
296	The total likelihood is thus given by the product of $L_{i,c}$ over all the genetic clusters and
297	individuals in the data

299
$$L = \prod_{i} \left[\prod_{c} \left[\left(\prod_{u \in Onsets_{i,h,c}} p_{i,h,c}(u) \right) * \left(\prod_{a \in At_{risk_{i,h,c}}} \left(1 - p_{i,h,c}(a) \right) \right) \right] \right]$$

301 A3. Further details of the adaptive MH-MCMC algorithm

302 We used Bayesian inference to obtain estimates of the model parameters φ = {*Prev.hom*, 303 Prev.het, Sus.age.2, Sus.age.3, Sus.age.4, Curr.het, HH.rsv.a, HH.rsv.b, HH.size, Gen.rate, 304 Low.Sym, High.Sym, Comm.rsv.a, Comm.rsv.b, Exp.age.2, Exp.age.3, Dist.rate, Delta, Beta} 305 and the augmented data D_A given the observed data D. We assume that all the cases were 306 observed but that for some of the cases, there is no information on the cluster id of the 307 shedding episode, as such, the augmented data is the set of all shedding episodes whose 308 cluster id was left unassigned by the imputation process previously described. These include 309 cases that are part of household outbreaks with no genetic information and cases that are 310 part of household outbreaks with more than one possible genetic cluster id. For cases that 311 are part of an outbreak with no genetic information, a single cluster id is inferred for all the 312 cases in the household outbreak.

313

Bayesian inference results in an updated distribution of the parameter of interest (posterior distribution) given prior assumptions/knowledge of the parameter (prior distribution) and an expression giving the probability of a parameter value given data (likelihood) i.e. $P(\varphi|D, D_A) \propto P(\varphi) \times L(\varphi|D, D_A)$. Where there is no exact expression for the posterior distribution, numerical methods are used to find an approximation of the target distribution, adaptive MH-MCMC is a popular first step.

320

We specified the target distribution as $p(\varphi|D, D_A) = P(D|D_A)L(\varphi|D, D_A)P(\varphi)$; $P(D|D_A) =$ probability of the observed data given the augmented data; $L(\varphi|D, D_A)$ = the likelihood of the parameters given the observed and augmented data; $P(\varphi)$ = the prior probability of the parameters. The augmented and observed data are independent and we have no

325	information to inform what the missing cluster ids could be, making every combination of D
326	and D_A equally likely. Consequently, we did not include $P(D A)$ when calculating the
327	posterior probability. We used weakly informative priors in the form of a normal
328	distribution with mean 0 and a standard deviation of \sim 3 for the log of parameters. We
329	initiated 3 chains and set the algorithm to start adapting the proposal distribution based on
330	accepted parameters after 10000, 15000 and 10000 iterations respectively. Burn-in was
331	assessed visually after which the results of the three concurrent chains were combined to
332	infer the posterior distribution. The three chains were run for 250,000 iterations each.
333	
334	Choice of proposal distributions for the parameters
335	For the parameter set $arphi$ we used a multivariate normal distribution as the proposal
336	distribution. For iteration n in the chain a new set $arphi^*$ will be proposed such that
337	$\varphi^* \sim Normal(\varphi^{n-1} \Sigma)$. The choice of the variance-covariance matrix Σ will determine the
338	size of the space that is explored and how fast the MCMC chain converges. After a certain
339	number of iterations, Σ was modified to ensure proper mixing. The modification was
340	automated through an adaptive random walk MH-MCMC algorithm. There are several
341	adaptation algorithms [7], we chose one that learns from the empirical distribution of
342	values up to the (n-1) th iteration to modify the Σ at iteration n. For samples
343	$\{\varphi_1, \varphi_2, \varphi_3, \dots \varphi_{n-1}\}$ in the MCMC chain so far, at iteration n the proposal density g(.) is
344	given by
345	
346	$g_n(.) = (1 - \varepsilon)N(\varphi^{n-1} 2.38^2\Sigma_{n-1}/d)) + \varepsilon N(\varphi^{n-1} 0.1^2\Sigma_0/d)$
347	

348 Where:

349	$\varepsilon =$ A small positive constant, chosen to be 0.05 as in [7].		
350	Σ_{n-1} = The empirical variance-covariance matrix derived from samples		
351	$\{\varphi_1,\varphi_2,\varphi_3,\ldots\varphi_{n-1}\}$		
352	d = The dimension of the parameter set		
353	Σ_0 = The initial guess of the parameter variance-covariance matrix. This is usually a		
354	diagonal matrix of variances.		
355			
356	This notation means for a fraction of the time $(1-arepsilon)$, the proposal distribution will be		
357	$N(arphi^{n-1} 2.38^2\Sigma_{n-1}/d))$ and the rest of the time it will be $N(arphi^{n-1} 0.1^2\Sigma_0/d)$. Prior to		
358	adaptation beginning at iteration <i>n</i> , the proposal distribution at iteration <i>k</i> is given by		
359	$g_k(.) = N(\varphi^{k-1} 0.1^2\Sigma_0/d)$		
360			
361	Pseudo algorithm for our implementation of MH-MCMC		
362	For each MCMC chain		
363	1. Set initial values for the parameters and assign cluster ids at random for the		
364	outbreaks with no sequence information (uninformed outbreaks).		
365	2. For every iteration n		
366	a. Update parameter values		
367	i. Propose a new set of parameters by sampling from the proposal		
368	distribution: $\varphi^* \sim Normal(\varphi^{n-1} \Sigma)$		
369	ii. Calculate the acceptance probability $ ho(arphi^{n-1},arphi^*)=$		
370	$\min\left\{1, \frac{p(\varphi^* D, D_A^{n-1})}{p(\varphi^{n-1} D, D_A^{n-1})}\right\}$		

371	iii.	If $\rho(\varphi^{n-1},\varphi^*) > r \sim Uniform(0,1)$ update $\varphi^n = \varphi^*$ otherwise $\varphi^n = \varphi^*$
372		φ^{n-1}
373	b. Updat	e cluster id for a single uniformed outbreak
374	i.	Randomly select an uniformed outbreak from the set of uninformed
375		outbreaks, all with the same probability of being selected.
376	ii.	Given the present cluster id for the chosen outbreak \mathcal{C}_r , randomly
377		select a new cluster id from the set of all possible clusters excluding
378		C_r .
379	iii.	With C_s as the proposed cluster id, the proposed change to the
380		augmented data is accepted with probability
381		$\rho'(D_A^{n-1}, D_A^*) = \min\left\{1, \frac{p(\varphi^n D, D_A^*)}{p(\varphi^n D, D_A^{n-1})} \frac{ C_r }{ C_s + 1}\right\}$
382		Where $ C_r $ is the number of household outbreaks in C_r in the present
383		permutation of the augmented data D_A^{n-1} and $ C_s $ is the number of
384		household outbreaks in C_s .
385		
386	iv.	If $\rho'(D_A^{n-1}, D_A^*) > r' \sim Uniform(0,1)$ update D_A^n, D_A^* otherwise
387		D_A^n , D_A^{n-1}
388		
389	The correction factor	$\frac{ C_r }{ C_s +1}$ is introduced into the acceptance ratio for a proposed change in
390	cluster id because the	e proposal distributions are not symmetric. For an update of cluster id
391	from C_s to C_r , the pro	posed change is uniformly distributed over the set of all household

- 392 outbreaks/cases in cluster C_s that are part of the augmented dataset. Conversely the
- 393 reverse move of a change of cluster id from C_r to C_s is uniformly distributed over the set of

- all household outbreaks/cases in cluster C_r that are part of the augmented dataset. As such,
- 395 the proposal distributions are dependent on the number of uniformed household outbreaks
- in each cluster.

A4. Further details of the HPTS

398 Establishing the highest probability transmission source (HPTS)

399 Per case, we identified the transmission source that had the highest likelihood given the 400 data and a parameter set φ^* sampled from the joint parameter posterior distribution (highest probability transmission source: HPTS). Consider a case i , with onset date T_i^O . Given 401 402 our assumption of a maximum latency duration of 5 days, we define a time window where 403 potential infection could have occurred. For each day in the time window, potential sources of infection are $\{\Omega_i^1, \Omega_i^2 \dots \Omega_i^n\}$. An infection source is assigned if it gives the highest value of 404 405 i's likelihood defined as " the likelihood of i's onset date, infection date and infection source 406 given sample parameter set φ^* .

407

We modified the likelihood to establish the most likely infection source (HPTS) for every case. For a given case *i* infected with RSV cluster *c* within group *g*, there are three possible sources of infection (Ω_i), either a sampled housemate, a sampled neighbour or an unknown community source. The total rate of exposure is given as:

412
$$\lambda_{i,h,c}(t) = S_{i,g}(t) \left[M_{i,h}(t) \sum_{j \neq i} HH_{Rate_{h,c,j \to i}}(t) + Comm_Rate_{i,c}(t) \right] \dots (Eq A4.1)$$

413 Where (as in the main text):

414 $S_{i,g}(t)$ is the factor modifying exposure by recent group specific infection history, age and 415 group specific shedding status at time **t**

416 $Comm_Rate_{i,c}(t)$ is the cluster specific community (external to the household) exposure 417 rate.

419 The probability of exposure is = prob(any exposure event) * prob(exposure to cluster c)

420
$$\alpha_{i,h,c}(t) = \left(1 - exp^{-\sum_{c'}\lambda_{i,h,c}(t)}\right) * \left(\frac{\lambda_{i,h,c}(t)}{\sum_{c'}\lambda_{i,h,c}(t)}\right) \qquad \dots \ (Eq \ A4.2)$$

421

422 For a given source of infection Ω_i in the same household as *i*, the rate of exposure is given 423 by:

424

425
$$\lambda_{\Omega_i \to i,h,c}(t) = S_{i,g}(t) [M_{i,h}(t) \times P_{\Omega_i \to i} \times \eta_g \times \psi_H(Household_size_i)$$

426
$$\times \psi_{I,inf} (Infectivity_{\Omega_i,h,c}(t)) \times M_{\Omega_i,h}(t)]$$

427

428 For Ω_i not in the same household as *i* but among the sampled individuals, the rate of 429 exposure is given by:

430

431
$$\lambda_{\Omega_i \to i,h,c}(t) = S_{i,g}(t) \left[\varepsilon_g \times \psi_{E,age} \left(Age_{group}_{E,i} \right) \times M_{i,h}(t) \times P_{\Omega_i \to i} \right]$$

432
$$\times \psi_{I,inf} \left(Infectivity_{\Omega_{i},h,c}(t) \right) \times K \left(d_{i,\Omega_{i}}, \kappa \right) \times M_{\Omega_{i},h}(t) \right]$$

433

434 For Ω_i an unknown source external to the household, the rate of exposure is given by:

435

436
$$\lambda_{\Omega_i \to i,h,c}(t) = S_{i,g}(t) \left[\varepsilon_g \times \psi_{E,age} \left(Age_{group_{E,i}} \right) \times f_c(t) \right]$$

437

438 The probability of transmission from a single source Ω_i at time *t* thus becomes:

439
$$Pr_{\Omega_i \to i,h,c}(t) = \frac{\lambda_{\Omega_i \to i,h,c}(t)}{\lambda_{i,h,c}(t)} \qquad \dots \ (Eq \ A4.3)$$

The probability given in $(Eq \ A4.1)$ is calculated for a time point $t = \exp$ osure time of individual *i*, t_i^E . This is not observed in the data, however, given our assumption on the latency duration, we can define a 6-day window of possibility. If case *i* had a shedding onset at time T_i^O , then the window for transmission is from day $(T_i^O - 5)$ to $(T_i^O - 0)$. For each day in the window, potential sources are identified based on shedding status and for each combination of infection source Ω_i and exposure date t_i^E , the likelihood is calculated using the formula below:

449

$$450 \qquad L(\varphi|\{T_i^o, t_i^E, \Omega_i\}) = \alpha_{i,h,c}(t) * \left(\prod_{t_i \neq t_i^E} \left(1 - \alpha_{i,h,c}(t)\right)\right) * \left(\theta_l(T_i^o - t_i^E)\right) * \left(\frac{\lambda_{\Omega_i \to i,h,c}(t_i^E)}{\lambda_{i,h,c}(t_i^E)}\right)$$

451

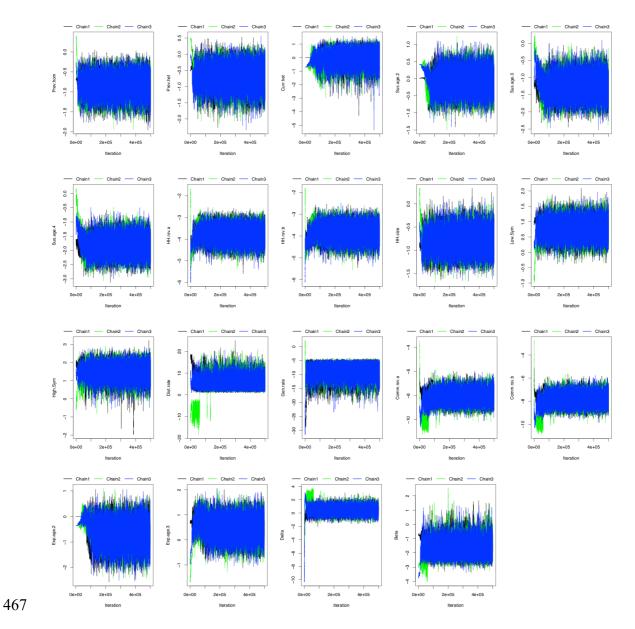
452 The first part of the product is the probability of infection with cluster **c** at time t_i^E , the 453 second part is the probability of escaping infection at any time $t_i \neq t_i^E$, the third is the 454 probability of a latency duration of length $(T_i^o - t_i^E)$ and the last term is the probability of 455 transmission from source Ω_i to *i*.

456

Given the likelihood, the highest-probability-source is chosen as the infection source thatgives the highest value of the likelihood.

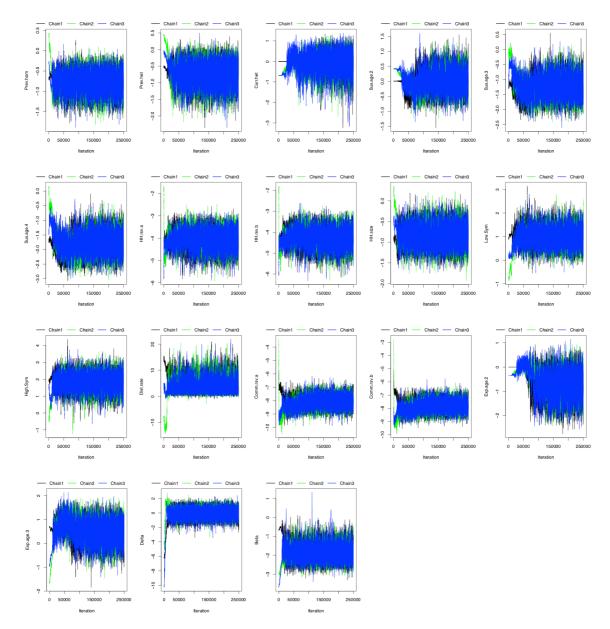
459 **A5. Extra results**

- 460 Parameter trace plots and convergence checks
- 461 Three MCMC chains were run, and the burn-in point assessed for each, after which, the
- 462 reminder of the three chains were combined to give the posterior estimates for the
- 463 parameters presented as median and 95% credible intervals. The figures below show the
- 464 evolution of the parameter value with increasing number of iterations for the model with
- 465 pathogen identification at the genetic cluster level (cluster model) and at the group level
- 466 (group model).



468 Figure A5. 1: Trace plots of parameters in the cluster model.

- 469 Three chains were initiated at different parameter values and these are shown in black
- 470 (Chain 1), green (Chain 2) and blue (Chain 3) lines. The x-axis shows the iteration number,
- 471 while the y-axis shows the log parameter value.



473

474 Figure A5. 2: Trace plots of parameters in the group level data model.

475 Three chains were initiated at different parameter values and these are shown in black

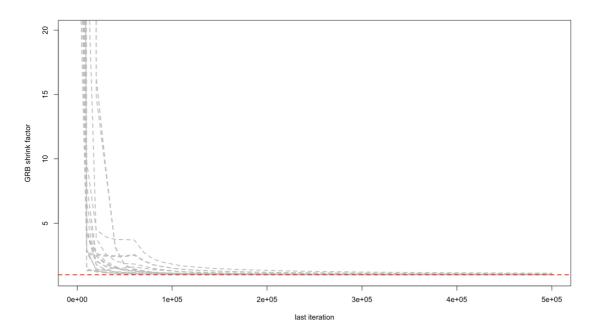
476 (Chain 1), green (Chain 2) and blue (Chain 3) lines. The x-axis shows the iteration number,

477 while the y-axis shows the log parameter value.

- 479 To confirm convergence observed in the trace plots, we calculated the Gelman-Rubin-
- 480 Brooks statistic and the effective sample size. When using the GRB statistic, convergence is
- 481 said to have occurred if the ratio of pooled/within chain variance is close to 1. The GRB

482 statistic assumes that the target distribution is Normal. The plot below shows the value of
483 the GRB statistic as the number of iterations increases for each parameter. This is to check
484 whether a value close to one was reached by chance or if the trend line had truly stabilized
485 close to 1.

486



487

488 Figure A5. 3: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink factor) as

489 the number of iterations increases.

490 Each grey line represents a model parameter in the cluster level data model and the dashed

- 491 red line shows the value 1.
- 492

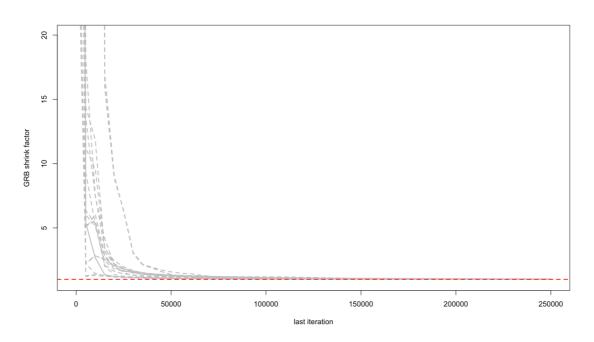
493 The point estimated of the GRB and the values of the ESS after burn in are given in the table

494 below.

- 496 Table A5. 1: The value of the GRB statistic (to 3 significant figures) and the ESS after burn-
- 497 in are shown for the parameters in the cluster level data model.

Parameter	Point estimate	ESS
	GRB statistic	
Prev.hom	1	10607
Prev.het	1	10073
Curr.het	1.01	7131
Sus.age.2	1.01	9154
Sus.age.3	1.02	9771
Sus.age.4	1.02	10384
HH.rsv.a	1	9476
HH.rsv.b	1.01	9765
HH.size	1	10147
Low.Sym	1.02	9987
High.Sym	1.01	9774
Dist.rate	1.16	10455
Gen.rate	1.04	10436
Comm.rsv.a	1.09	7847
Comm.rsv.b	1.09	7823
Exp.age.2	1	8432
Exp.age.3	1.01	9863
Delta	1.04	7908
Beta	1.03	6678

498 *The mGRB is 1.07 and the mESS is 10008.*





- 502 the number of iterations increases.
- 503 Each grey line represents a model parameter in the group level data model and the dashed
- 504 red line shows the value 1.

- 506 Table A5. 2: The value of the GRB statistic (to 3 significant figures) and the ESS after burn-
- 507 in are shown for the parameters in the group level data model.

Parameter	Point estimate	ESS
	GRB statistic	
Prev.hom	1.01	3713
Prev.het	1.02	3978
Curr.het	1.07	2309

Sus.age.2	1.02	2998
Sus.age.3	1.03	3617
Sus.age.4	1.04	3694
HH.rsv.a	1.01	3426
HH.rsv.b	1.01	3361
HH.size	1.02	3673
Low.Sym	1.04	3957
High.Sym	1.03	3744
Dist.rate	1.07	3374
Comm.rsv.a	1.05	4069
Comm.rsv.b	1.05	4093
Exp.age.2	1.02	2858
Exp.age.3	1.02	3476
Delta	1.04	5331
Beta	1.04	3873

508 The mGRB is 1.09 and the mESS is 4146.

- 510 As a rule of thumb, a GRB of <1.1 is generally considered good, as such, it is safe to conclude
- 511 that there was convergence.

512

514 Table A5. 3: Median and 95% credible intervals for parameters estimated using the model

515 with sequence data.

Symbol	Description	Name	Median (95%
			Credible interval)
ϕ_{Y}	Coefficients modifying susceptibility	Prev.hom	0.4328 (0.2665,
	to infection by a particular RSV	Prev.het	0.6727)
	group depending on infection		0.5126 (0.2601,
	history. Prev.hom estimates the		0.8985)
	effect of a previous homologous		
	group infection, and Prev.het the		
	effect of a previous heterologous		
	infection		
$\phi_{\scriptscriptstyle W}$	Coefficient modifying susceptibility	Curr.het	0.9520 (0.2494,
	to a particular RSV group based on		2.262)
	shedding status of the heterologous		
	group type		
ϕ_X	Coefficients modifying susceptibility	Sus.age.2	0.8804 (0.4997,
	to RSV by age. <i>Sus.age.2</i> estimates	Sus.age.3	1.616)
	modification to group 1-4 years,	Sus.age.4	0.2741 (0.1591,
	Sus.age.3 5-15 years and Sus.age.4		0.4946)
	≥15 years relative to group <1 year.		0.1562 (0.08867,
			0.2852)

η_g	Baseline rate of within household	HH.rsv.a	0.02360 (0.0119,
	exposure by RSV group, per person	HH.rsv.b	0.04361)
	per day.		0.02272 (0.01120,
			0.04196)
$\psi_{\scriptscriptstyle H}$	Coefficient modifying the amount of	HH.size	0.4457 (0.2892,
	within household exposure by		0.6843)
	household size for households of 8		
	or more relative to <8.		
ψ_I	Coefficients modifying	Low.Sym	2.1 (1.214, 3.67)
	infectiousness by viral load and	High.Sym	4.437 (1.8, 8.959)
	symptom status. Relative to being		
	asymptomatic, Low.Sym estimates		
	the effect of shedding low viral load		
	and being symptomatic and		
	High.Sym the effect of shedding high		
	viral load and being symptomatic		
к	The rate of exponential decay on the	Dist.rate	207.7 (7.819,
	spatial distance kernel		169100)
θ	The rate of exponential decay on the	Gen.rate*	0.0002631
	genetic weight function.		(0.000001027,
			0.003817)

$arepsilon_g$	Baseline rate of community	Comm.rsv.a	0.0003091
	exposure by RSV group, per person	Comm.rsv.b	(0.0001198,
	per day.		0.0008682)
			0.0003849
			(0.0001525,
			0.001072)
ψ_{E}	Coefficients modifying the rate of	Exp.age.2	0.5311 (0.2179,
	community exposure by age group.	Exp.age.3	1.221)
	Exp.age.2 for 1-4 years and		1.64 (0.7705,
	<i>Exp.age.3</i> for \geq 5 years, relative <1		3.386)
	year		
δ, β	Parameters for the cluster specific	Delta	1.58 (0.5466,
	background community function.	Beta	4.693)
			0.1929 (0.08315,
			0.7321)

517 A6. Model validation

518	To validate the model, we simulated multiple epidemics and checked to see if the observed
519	epidemic was captured by the range of simulated dynamics. In addition to comparing the
520	time course of cases, we also looked at the total number of cases in an epidemic, the
521	proportion of individuals with multiple onsets and the number of cases in the first and last
522	week of the time period. These values from the data were compared to the range of
523	simulated values to check that key aspects of the epidemic were being reproduced by the
524	simulations.
525	
526	The results of the model fitting are the posterior parameter distribution and corresponding
527	augmented data for the cluster ids of cases with no genetic information. A simulation based
528	on a set of parameter values will also be based on the corresponding augmented data which
529	will be used to derive a complete set of shedding profiles from the observed data. A single
530	shedding profile is a combination of duration of shedding, viral loads and symptom status,
531	and genetic cluster. The simulation pseudo code per simulation is as follows:
532	
533	1. Initiate system such that everyone one is susceptible to RSV.
534	2. At every time step keep track of the following variables:
535	a. Exposure status (by RSV cluster)
536	b. Shedding status by group
537	c. Shedding status by genetic cluster
538	d. Infectiousness status (combination of viral load and symptom status)
539	e. Infection history (by RSV group)
540	f. The background rate of exposure from the community

541 3. At every time step:

- 542 a. Update the background community function to reflect any new shedding543 onsets
- b. Calculate the cluster specific rate of exposure, $\lambda_{i,h,c}(t)$, as defined in the main text.

546

c. Determine the number of group specific transmission events E_g where

547
$$E_g = Poisson\left(\sum_{i \in S_{E_g}} P_{E_g,i}\right)$$

548 S_{E_g} = set of all individuals susceptible to infection event E_g .

549 $P_{E_g,i}$ = probability of person *i* experiencing event E_g

550
$$P_{E_g,i} = \sum_{\substack{c = clusters \\ in g}} \left(\left(1 - exp^{-\sum_{c'} \lambda_{i,h,c}(t)}\right) * \left(\frac{\lambda_{i,h,c}(t)}{\sum_{c'} \lambda_{i,h,c}(t)}\right) \right)$$

551 Where
$$\lambda_{i,h,c}(t)$$
 = rate at which person **i** is exposed to infection of

553d. Given the number of group specific transmission events, determine the554cluster id of each through weighted sampling. E.g. if $E_g = 4$ and $c = \{1,2,3\}$ are555the cluster ids in the group, the probability of a case being any one if the556three clusters is:

557
$$\left\{\frac{\lambda_{h,1}(t)}{\sum_{c'}\lambda_{h,c}(t)}, \frac{\lambda_{h,2}(t)}{\sum_{c'}\lambda_{h,c}(t)}, \frac{\lambda_{h,3}(t)}{\sum_{c'}\lambda_{h,c}(t)}\right\}, for \lambda_{h,1}(t) = \sum_{i}\lambda_{i,h,c}(t)$$

e. Determine who experiences each cluster specific transmission event. For a
given event, order individuals capable of experiencing the event. For a given
person *p* to experience the event, the following inequality has to be satisfied.

562
$$\sum_{i=1}^{i \le p-1} P_{E_c,i} < \left(RAND \times \sum_{i \in S_{E_c}} P_{E_c,i}\right) \le \sum_{i=1}^{i \le p} P_{E_c,i}$$

563 Where:

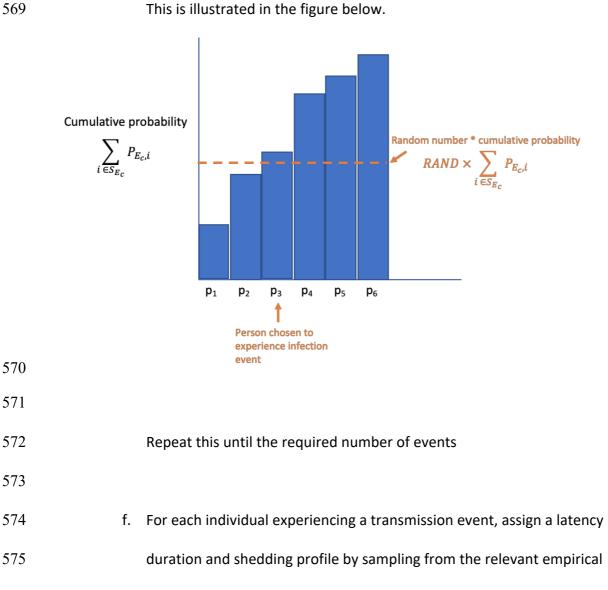
564

565
$$P_{E_c,i} = \left(1 - exp^{-\sum_{c'}\lambda_{i,h,c}(t)}\right) * \left(\frac{\lambda_{i,h,c}(t)}{\sum_{c'}\lambda_{i,h,c}(t)}\right)$$

 $S_{{\it E}_{\it C}}$ = all individuals susceptible to infection of cluster type c. 566 RAND = a random number between (but not including) 0 and 1. 567

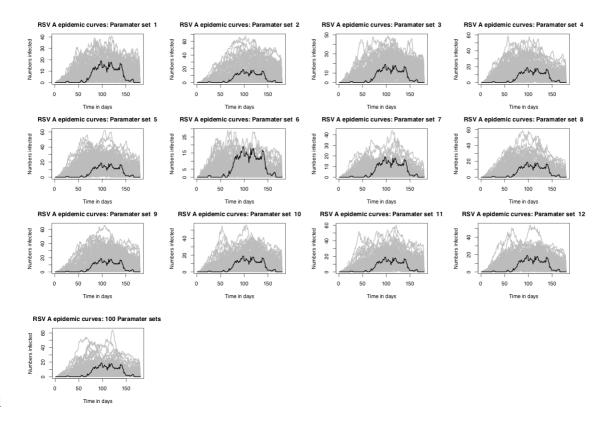
568

This is illustrated in the figure below.

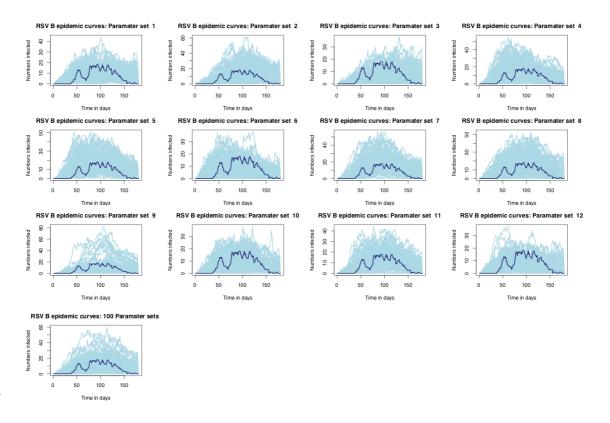


576	distributions. The empirical latency distribution is the same as was used in
577	estimating the parameters and is homogeneous for every individual.
578	Shedding profiles are derived from the observed data and a combination of
579	duration of shedding, viral loads and symptom status, and genetic cluster.
580	The shedding profiles are grouped by age in the following 4 groups <1,1-5, 5-
581	15 and ≥15 years. Once latency durations and shedding profiles have been
582	assigned, the state variables for each individual are updated accordingly.
583	
584	To explore how much variation there can be in the simulations from a single parameter set,
585	a set of 12 parameter set samples were used, and for each set, 100 simulations were run,
586	giving a total of 1200 simulations. We then sampled 100 parameter sets and run single
587	simulations from each to explore between-parameter-set variation. The results of the
588	simulations are presented in the form of epidemic curves and summary measures that are

589 used to compare the main features of the outbreak.



- 592 Figure A6. 1: A comparison of simulated and observed data for RSV A.
- 593 Each panel shows the results of 100 simulations from a single parameter set. The grey lines
- show the simulated data while the black lines show the observed data. Time is shown on the
- 595 x-axis while the y-axis shows the total number of people who are shedding at a given point
- 596 in time.



598 Figure A6. 2: A comparison of simulated and observed data for RSV B.

599 Each panel shows the results of 100 simulations from a single parameter set. The light blue

- 600 lines show the simulated data while the dark blue lines show the observed data. Time is
- 601 shown on the x-axis while the y-axis shows the total number of people who are shedding at
- 602 a given point in time.

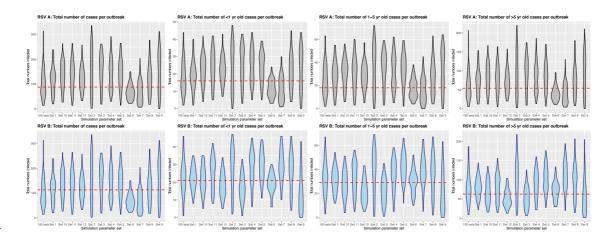


Figure A6. 3: Violin plots showing the distribution of the total number of people infected
in the simulations by RSV group and age.

607 Each panel shows the distribution of the total numbers infected in the simulations run using

608 12 different parameter sets (violin plots) compared to the total number from the observed

609 data (dashed red line). The y-axis shows the total number and the x-axis is labeled by

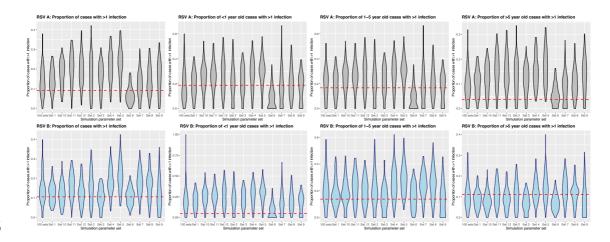
610 parameter set used. Top row: RSV A results for all the cases (1st column), cases < 1 year old

611 (2nd column), cases between 1-5 years old (3rd column) and cases > 5 years old (4th column).

612 Bottom row: RSV B results. Violin plots are a combination of box plots and density

613 distributions, the shapes should therefore be interpreted as density plots would while the

614 ranges should be interpreted as the tips of whiskers in a box and whisker plots.

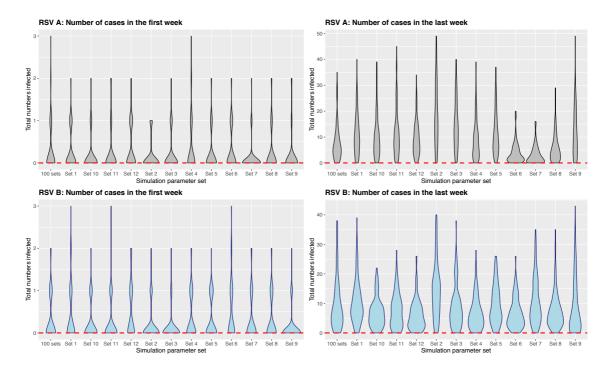


616

617 Figure A6. 4: Violin plots showing the distribution of the proportion of cases that had

618 multiple onsets in the simulations by RSV group and age.

Each panel shows the distribution of the proportion of cases that had multiple onsets in the simulations run using 12 different parameter sets (violin plots) compared to the proportion from the observed data (dashed red line). The y-axis shows the proportion and the x-axis is labeled by parameter set used. Top row: RSV A results for all the cases (1st column), cases < 1 year old (2nd column), cases between 1-5 years old (3rd column) and cases > 5 years old (4th column). Bottom row: RSV B results.



626

627 Figure A6. 5: Violin plots showing the distribution of the number of cases in the first (1st

- 628 column) and last (2nd column) week of the observation/simulation period in the
- 629 simulations by RSV group.
- 630 The y-axis shows the total number of people infected and the x-axis is labeled by parameter
- 631 set used. The dashed red line shows what was observed in the data, i.e. there were no cases
- 632 observed in the first and last week of the 180-day observation period.

633 A7. Model modification to fit pathogen data identified at group resolution

The null model is similar in structure to the model of sequence data presented in the main text, however, there is no identification of the infecting pathogen at the cluster level, only at the group level. The rate of exposure to a particular RSV cluster **g** acting on a susceptible person **i** from household **h** at time **t**:

638

639
$$\lambda_{i,h,g}(t) = S_{i,g}(t) \left[M_{i,h}(t) \sum_{j \neq i} HH_{Rate_{h,g,j \to i}}(t) + Comm_Rate_{i,g}(t) \right] \dots (Eq A7.1)$$

640 Where:

641 $S_{i,g}(t)$ is the factor modifying exposure by recent group specific infection history, age and 642 group specific shedding status at time **t** given by:

643

644
$$S_{i,g}(t) = \exp\left(\phi_{Y,hist}\left(Infection_History_i(t)\right) + \phi_{X,age}\left(Age_group_{S,i}\right)\right)$$

$$645 \qquad \qquad + \phi_{W,curr} \left(Shedding_status_i(t) \right) \right)$$

646

647 $HH_Rate_{h,g,j \rightarrow i}(t)$ is the group specific within household exposure rate given by:

648

649 $HH_Rate_{h,g,i \rightarrow i}(t)$

$$= \eta_g \times \psi_H(Household_size_i) \times \psi_{I,inf}(Infectivity_{j,h,g}(t)) \times M_{j,h}(t)$$

651

652 $Comm_Rate_{i,g}(t)$ is the cluster specific community (external to the household) exposure 653 rate given by:

$$654 \quad Comm_Rate_{i,g}(t)$$

$$655 = \varepsilon_g$$

$$656 \qquad \times \psi_{E,age}(Age_group_{E,i}) \left(\left(M_{i,h}(t) \sum_{\substack{j \neq i, f \text{ work in} \\ i \leq hasse}} Sampled_Neighbour_Rate_{h,g,j \rightarrow i}(t) \right) \right)$$

$$657 \quad + f_g(t) \right)$$

$$658 \quad Where:$$

$$659$$

$$660 \quad Sampled_Neighbour_Rate_{h,g,j \rightarrow i}(t) = \psi_{h,g,j}(t) \times K(d_{i,j}, \kappa) \times M_{j,h}(t)$$

$$661$$

$$662 \quad \text{The background function } f_g(t) \text{ is derived the same way } f_c(t) \text{ is, as described in the main text.}$$

$$653 \quad \text{Since we do not use genetic distances in this version of the model, we do not estimate ϑ for
$$664 \quad P_{j \rightarrow i} = exp^{-d_{gen}(i,j) - \vartheta} \text{ or } P_{j \rightarrow i} = 1 \text{ if } d_{gen}(i,j) \leq \vartheta, 0 \text{ otherwise, making the total}$$

$$665 \quad \text{number of parameters 17.}$$

$$666 \quad \alpha_{i,h,g}(t) = (1 - exp^{-\lambda_{i,h,g}(t)}) \quad \dots (Eq \ A7.2)$$

$$671 \quad \text{The probability of onset is given as:}$$

$$672 \qquad p_{i,h,g}(t) = \sum_{i=0}^{L} \theta_i a_{i,h,g}(t-i) \quad \dots (Eq \ A7.3)$$$$

- 673 Where L is the maximum latency period and θ_l is the probability that the latency period is
- 674 exactly *l* days.
- 675
- 676 The likelihood for individual *i*'s data is given as:

677
$$L_{i} = \prod_{g} \left[\prod_{u \in U_{i,h,g}} p_{i,h,g}(u) \prod_{a \in A_{i,h,g}} (1 - p_{i,h,g}(a)) \right]$$

678 The total likelihood is thus given by the product of L_i over all the individuals in the data

680
$$L = \prod_{i} \left[\prod_{g} \left[\prod_{u \in U_{i,h,g}} p_{i,h,g}(u) \prod_{a \in A_{i,h,g}} \left(1 - p_{i,h,g}(a) \right) \right] \right]$$

682 A8. References

- 683 1. Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat
- 684 Protoc. Nature Research; **2006**; 1(3):1559–1582.
- 685 2. Wathuo M, Medley GF, Nokes DJ, Munywoki PK. Quantification and determinants of
- 686 the amount of respiratory syncytial virus (RSV) shed using real time PCR data from a
- 687 longitudinal household study. Wellcome Open Res [Internet]. **2017**; 1(0):27. Available

688 from: https://wellcomeopenresearch.org/articles/1-27/v2

- Agoti CN. Genomic analysis of respiratory syncytial virus infections in households and
 utility in inferring who infects the infant. Sci Rep. **2019**; .
- 691 4. Lee FE, Walsh EE, Falsey AR, Betts RF, Treanor JJ. Experimental infection of humans
- 692 with A2 respiratory syncytial virus. Antivir Res [Internet]. 2004/09/29. 2004;
- 693 63(3):191–196. Available from:
- 694 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
- 695 itation&list_uids=15451187
- 696 5. Campbell F, Didelot X, Fitzjohn R, Ferguson N, Cori A, Jombart T. outbreaker2 : a
- 697 modular platform for outbreak reconstruction. **2018**; 19(Suppl 11).
- 698 6. Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, Ferguson N. Bayesian
- 699 Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data.
- 700 PLoS Comput Biol [Internet]. **2014**; 10(1):e1003457. Available from:
- 701 http://dx.plos.org/10.1371/journal.pcbi.1003457
- 702 7. Roberts GO, Rosenthal JS. Examples of Adaptive MCMC. J Comput Graph Stat
- 703 [Internet]. **2009**; 18(2):349–367. Available from:
- 704 http://www.tandfonline.com/doi/abs/10.1198/jcgs.2009.06134