S1 Appendix - Biological age in UK Biobank: biomarker composition and prediction of mortality, coronary heart disease and hospital admissions

(Short title: Biological age biomarker composition and outcome prediction)

Table of Contents

1. UK Biobank and study population 3
UK Biobank. 3
Study population 3
Assessment dates and follow-up 3
Stratification by health status. 3
2. Exposure and outcome preparation 5
Biomarker data cleaning 5
Phenotyping health outcomes. 5
3. Statistical analyses 7
A. Biomarker characteristics. 7
B. Principal components of biomarkers 7
C. Estimation of biological ages and mortality score 7
D. Cross-validation of biological age estimation 8
E. Biomarker importance in biological ages. 9
F. Prediction of adverse health outcomes 9
G. Explanatory power of biological ages. 9
H. Calibration of biological ages 9
4. Supplementary results 11
Results of the biological age estimation and the prediction of health outcomes 11
Cross-validation of biological age estimation 11
Calibration of biological ages. 11
Predictive power of biological ages 11
Supplementary tables and figures 12
Table 1: List of in-scope British National Formulary (BNF) Chapters and Sections related to chronic disease12
Table 2: Summary statistics for chronic disease medication count at baseline in the UK Biobank 12
Table 3: Repeated measures Pearson correlation coefficients adjusted for baseline age for each of the 74 candidate biomarkers, by sex 13
Table 4: Missingness and Pearson correlations of best measure and supplemented lung function baseline and repeated measurements 14
Table 5: List of the 72 UK Biobank biomarkers selected for analysis, with percentage of missing data for each biomarker in the whole population 15
Table 6: Constituent ICD-10 codes for the age-related hospital admissions definition, ranked by hazard ratioof baseline age in the UK Biobank17
P-values of hazard ratios for 10 years of age for each ICD-10 group were significant at the 10^{-3} level. 17
Table 7: Number of events for each outcome in each prior health subpopulation, by sex 18
Table 8: Pearson correlation coefficients of biomarkers with chronological age ranked by magnitude, in the Healthy subpopulation, by sex. 18
Table 9: Model coefficients for (A) Klemera Doubal and (B) stepwise regression biological ages, in the Healthy subpopulation, by sex. 20
Table 10: Importances of the 51 biomarker principal components in the Klemera Doubal ages for healthy men (left) and women (right) 22
Table 11: Relative contribution (as a percentage of the total contribution of biological and chronological ages) of Klemera Doubal biological age and chronological age in explaining each health outcome, in (A) the main analysis (top) and (B) when using the reduced biomarker panel (bottom), for healthy men and women23
Table 12: Harrell's C-indices (with standard errors) for mortality score and biological ages, for each outcome and subpopulation in the main analysis (unadjusted). 24
Table 13: Harrell's C-indices (with standard errors) for chronological age and biological ages, for eachoutcome and subpopulation in the (A) main analysis (top) and when (B) using the reduced biomarker panel(bottom) (adjusted for environmental factors and health behaviours)25
Table 14: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist for this study 27
Figure 1: Flowchart of selection of study population, before population stratification 29
Figure 2: Flowchart of the classification process for UK Biobank medication names 29
Figure 3: Biomarker-age trends for the 72 candidate biomarkers, healthy men vs healthy women 30
Figure 4: Assessment of the need for stratification of healthy never vs healthy ex smokers: biomarker-age trends for the lung function biomarkers and systolic blood pressure, by sex 33
Figure 5: Characterisation of 14 of the first 51 biomarker principal components 34
Figure 6: 10-fold cross validation prediction errors (with standard error bars) for each subset of principalcomponents (to a maximum of 55) using (A) Klemera Doubal age (top) and (B) stepwise regression age(bottom), for healthy men (left) and women (right)39
Figure 7: Means and standard deviations of (A) Klemera Doubal (top) and (B) stepwise regression (bottom)biological ages by 2.5-year chronological age groups, for healthy men (left) and healthy women (right)40
Figure 8: Kaplan-Meier plots for (1) mortality from chronic disease, (2) age-related hospital admissions andstepwise regression biological ages, for healthy men (left) and healthy women (right)41

1. UK Biobank and study population

UK Biobank

The UK Biobank is a large and richly phenotyped prospective study with over 500,000 participants in middle age when recruited in 2006-2010. ${ }^{1}$ The resource has collected and continues to collect extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, and longitudinal follow-up for a wide range of health-related outcomes. ${ }^{1}$ Details on the recruitment, biomarker measurement and data linkage procedures are available from the UK Biobank website. ${ }^{2}$ UK Biobank is an open access data resource for bona fide researchers who wish to use it to conduct health-related research for the benefit of the public, and access procedures are also detailed on the UK Biobank website. ${ }^{2}$

Study population

This study included all participants in the UK Biobank data extract in April 2019. Information on sociodemographic characteristics, self-reported health behaviours, health ratings and medication were collected from touchscreen questionnaires. Linkage to Hospital Episode Statistics (HES) provided prior and prospective information on secondary care outcomes. Linkage to the Office for National Statistics (ONS) death registry provided date and cause of death. Over 100 biomarkers were measured via physical measurement devices, blood assays and urine assays. Sex, age (rounded down by month) and the date of assessment were available for all participants. Index of Multiple Deprivation 2010 score was grouped into quintiles within the UK Biobank population in each country.

Of the 502,536 participants in the UK Biobank, participants were excluded if they had no date of assessment or did not attend the verbal interview, had none of the blood count or plasma measurements, were younger than 40 or older than 70 years at baseline, or were missing their Index of Multiple Deprivation score. After these exclusions, there were 480,019 participants in the study population (Figure 1).

Assessment dates and follow-up

Participants attended baseline assessment in 2006-2010 and a subset of $\approx 20,000$ participants attended a repeat assessment in 2012-2013. ${ }^{1}$ Participants were followed up for a median of 8.7 years to the death record censoring date of 31 January 2018 for English and Welsh participants or 30 November 2016 for Scottish participants. HES records were available for a median follow up period of 8.0 years, until 31 March 2017 for English participants, 31 October 2016 for Scottish participants, or 29 February 2016 for Welsh participants.

Stratification by health status

A composite measure of prior health for stratification into 4 subpopulations was derived from self-reported characteristics at baseline interview and HES records, according to these definitions:

1. Healthy: No self-reported chronic disease medications, good self-reported health, steady/brisk walk speed,

0-2 HES episodes prior to recruitment, never/ex smoker, no prior disease or hip/wrist fracture
2. Some medications: 1-2 self-reported chronic disease medications, 0-2 HES episodes, no prior disease or hip/wrist fracture
3. Slightly unhealthy: Participants who do not fall into other categories
4. Poor health: Prior disease or hip/wrist fracture

Diseases in scope are age-related chronic diseases recorded in HES: Cardiac arrhythmia, chronic kidney disease, diabetes mellitus, heart failure, ischaemic heart disease, peripheral arterial disease, arthritis, rheumatoid arthritis, osteoporosis, gout, dementia, stroke/transient ischaemic attack, chronic obstructive pulmonary disease, connective tissue disease, liver disease and malignant cancers.

Self-reported medications were classified as chronic disease-related using a data-driven and text-mining approach applied to the 1366 medication names reported in the UK Biobank at April 2017. These medication names were mapped to British National Formulary (BNF) Chapters, Sections and Paragraphs that were defined by BNF as at December 2017. ${ }^{3}$ A clinician reviewed the classification of the 167 BNF Sections matched to the reported medication names. This medication classification process is summarised in Figure 2 and the 50 BNF Sections that were classified as chronic disease-related in this study are listed in Table 1.

A simple count of chronic disease medication types was done for each participant in the study, based on selfreported medication use at baseline. Participant responses were classified by a trained nurse during the verbal interview stage of the baseline assessment. This method of counting medication types was based on a procedure for counting BNF Paragraphs of reported medications, which was found to be predictive of mortality. ${ }^{4}$ No medication use was reported by 51.6% of participants, while the remaining 48.4% reported 787 chronic diseaserelated medications in the relevant BNF Sections identified earlier (Tables 1 and 2). The mean number of medications per participant for those reporting medication use was 1.72.

The phenotyping of non-cancer prior disease was based on a list of diseases and their respective ICD-10 codes derived from linked primary and secondary care records in England. ${ }^{5}$ Prior cancer was defined as malignant cancers (excluding in-situ neoplasms, benign neoplasms and non-melanoma skin cancers). ${ }^{6}$ Age-related chronic diseases were selected for use in this study were based on the following criteria: (1) commonly classified as a chronic rather than acute disease, (2) clear increasing trend in incidence with chronological age, and (3) not defined solely by levels of any biomarker in the candidate biomarker list.

Prior hip and wrist fractures were identified in participants using the ICD-10 codes S72 and S62 respectively.

2. Exposure and outcome preparation

Biomarker data cleaning

As at April 2019, 110 physical and biochemical biomarkers were available in UK Biobank. Biomarkers were excluded from the panel for this study if they were measured in $<70 \%$ of the whole population, if they were not measured on a continuous scale, or if they measured the same biological trait (e.g. standardly-measured but not impedance device-measured weight was selected), leaving 74 biomarkers (Table 3).
'Best' measures for the included lung function biomarkers, forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC), were defined by UK Biobank ${ }^{2}$ and available for 72% of men and 70% of women in this study. Up to 3 raw readings for each biomarker were also available. Both lung function biomarkers had the highest proportions of data missing within the biomarker panel, if only best measures were considered (Table 4). The raw readings provided two types of lower-quality measurements: (1) Remainder with 'accept' flags, created by taking the non-missing means of up to 3 readings flagged as 'accept' (available in an additional 4% of men and 4% of women); and subsequently (2) all remaining readings, created by taking the non-missing means of up to 3 available readings (measured in an additional 14% of men and 18% of women). Best measure, type (1) and type (2) baseline measurements were moderately or highly correlated with the type (1) repeated measures (Pearson correlation coefficients >0.585). Therefore, it is likely that these lower quality readings are more highly correlated with usual values than any general imputed value would be. The best measures were thus supplemented with these two types of measurements, reducing the missingness in the hybrid FEV1 and FVC measures to 10% and 8% for men and women respectively. (The use of additional readings has also been advocated by others. ${ }^{7}$)

FEV1 and FVC, along with hand grip strength, were each divided by standing height. ${ }^{8}$ This was done to ensure that measurements for these derived biomarkers were not strongly determined by body size.

A further 2 biomarkers, oestradiol and nucleic red blood cell count, were excluded due to poor reproducibility, leaving 72 biomarkers (Table 5). In this study, biomarker measurement quality threshold was set at an intraindividual Pearson correlation coefficient adjusted by baseline age of more than 0.1 , in the repeat assessment subset of 9447 men and 9888 women (Table 3). These 72 biomarkers were categorised by body system group, based partially on the biomarker categorisation used by a review of biological age studies. ${ }^{9}$

Biomarker measurements were cleaned by this procedure:

1. Urinary and blood plasma biomarkers, flagged as below or above the assay reportable range ${ }^{10}$ were replaced with the respective limit of the range.
2. All biomarkers, values were standardised by subtracting their overall mean and dividing by their standard deviation. Body size biomarkers exhibited sex differences, therefore they were standardised separately within each sex.
3. Standardised values outside ± 4 were treated as outliers, set to missing, and were subsequently imputed in step 4.
4. Imputation was carried out by replacing all missing values with the overall medians within 5-year baseline age, similar to a procedure based on imputing overall means. ${ }^{11}$ This was preferred to assigning a non-central biomarker value through multiple imputation ${ }^{12}$ and complete case analysis. ${ }^{13-16}$ Relative to chronological age, multiple imputation would skew individuals' biological ages in the direction that is indicated by the available biomarkers for each individual, and the degree of statistical inference applied to the missing biomarkers within the imputation procedure and the resulting uncertainty in biological age estimation are not communicated through their biological age. The use of complete cases based on biomarker measurements introduces bias into the estimation of biological ages that is difficult to quantify.

Phenotyping health outcomes

Three adverse health outcomes were investigated in this study: (1) Mortality due to chronic disease; (2) incidence of a coronary heart disease-related event; and (3) first admission to hospital for an age-related reason. These outcomes were phenotyped from death registry and HES records, based on code lists and procedures published by previous studies. ${ }^{11,13,14,17}$

1. Mortality due to chronic disease:

Mortality is the most objective and most accurately recorded outcome available in UK Biobank. Based on ICD-10 coded causes of death, accidental deaths ${ }^{13,14}$ and non-chronic disease deaths ${ }^{11}$ were excluded, following previous studies' procedures. These deaths would not be much related to ageing processes and their high prevalence at younger ages might mask ageing-related mortality effects. The exclusions were specified by ICD-10 Chapter: certain infectious and parasitic diseases (A00-B99), pregnancy, childbirth and the puerperium (O00-O99), congenital malformations, deformations and chromosomal abnormalities (Q00Q99), injury, poisoning and certain other consequences of external causes (S00-T98) and external causes of morbidity and mortality (V01-Y98).
2. Incidence of a coronary heart disease-related event:

The incidence of a coronary heart disease (CHD) is commonly used as an adverse endpoint in clinical trials and observational studies of disease epidemiology. In this study, a CHD event was defined as a HES diagnosis or a death registry-recorded death, where the diagnosis or cause of death was coded as any of the following ICD-10 codes: I21, I251, I255, I259, I214, I219, I249.
3. First admission to hospital for an age-related reason:

Hospital admissions for age-related reasons may be symptoms of biological frailty and were identified through a frailty risk score for secondary care records. ${ }^{17}$ Frailty is a strong predictor for multimorbidity and mortality in the UK Biobank ${ }^{18}$ and adverse health outcomes in many other populations. ${ }^{19}$ It precedes mortality, and may be a general indicator of ageing earlier in life. However, not all components of frailty are age-related or are recorded in clinical care. Since the operational definitions of frailty (clinicianassessed frailty, variations of the frailty phenotype and frailty indices) differ, and further research is required to assess the ability of health record-based frailty indices to detect biological frailty, ${ }^{20}$ for the avoidance of doubt the term 'hospital admissions' was used instead.

The age-related hospital admisssion outcome in this study was constructed from the candidate ICD-10 codelist in the study of hospital frailty risk score for HES inpatients: ${ }^{17}$
a. Incident cases in the UK Biobank at April 2017 were identified for each of 75 candidate frailty subtypes, defined as standalone 3-digit ICD10 codes in HES diagnosis records with >500 incident cases, otherwise grouped ICD-10 codes within the same ICD-10 block (Table 6).
b. Hazard ratios per 10 years of baseline chronological age were then estimated for each candidate subtype as the outcome, with Cox models adjusted for smoking status, alcohol intake frequency and Townsend deprivation quintile.
c. Subtypes were included in the definition if this hazard ratio exceeded the threshold of 1.2.

The number of events for each outcome was summarised by prior health subpopulation and sex in Table 7.

3. Statistical analyses

A. Biomarker characteristics

Biomarker-age trends were assessed for linearity and for homogeneity between sexes and across prior health subpopulations. To estimate biomarker-age trends, linear regression was used to obtain least-square means and standard errors of standardised biomarker values by 2.5 -year chronological age groups, separately by sex, adjusted for Index of Multiple Deprivation 2010 quintile, smoking status, alcohol consumption band and assessment centre. Trends for each biomarker were displayed on a common standardised scale for comparability (with original units included as a second scale), and visually assessed for linearity across age groups (Figure 3). These trends were assessed for linearity, as subsequent statistical methods assume linearity of biomarkerbiomarker or biomarker-age relationships.

To assess whether further stratification of the healthy subpopulation by smoker status was required, a sensitivity analysis of biomarker-age trends for healthy never vs ex smokers was carried out. All biomarkers were assessed, with a focus on lung function as it appeared to have the strongest linear relationship with chronological age, and is adversely affected by smoking. ${ }^{21}$ Figure 4 displays the trends for lung function biomarkers, which display the largest disparities by smoking status, and systolic blood pressure. The trends for the two lung function biomarkers were linear for each smoking status with a slight convergence at older ages, and the trends for the remaining biomarkers appeared to be similar regardless of smoker status. Therefore further stratification was not essential.

Pearson correlations, which assume linearity, were calculated for each biomarker and chronological age. The correlation coefficients for the healthy subpopulation are ranked by magnitude in S1 Table 8. Many previous studies used biomarker-age correlations to pre-select biomarkers for inclusion into biological ages. ${ }^{13-15,22,23}$ Preselection was not carried out in this study for two reasons: (1) to avoid selecting biomarkers that are potentially highly correlated with each other (due to their high correlation with chronological age), and (2) to allow methods for estimating biological age to complete their own selection process.

B. Principal components of biomarkers

Principal Component Analysis (PCA) was used to summarise the biomarkers (dimensions) into linearly independent principal components, which are linear combinations or composites of the original biomarkers. ${ }^{24}$ PCA was run on the full set of biomarkers after imputing missing values for the whole population. The resulting biomarker principal components were ranked by their eigenvalues, representing the degree of variation in biomarker values that each principal component describes. Ranking principal components by their eigenvalues facilitated the selection of a smaller number of biomarker principal components that still represented the majority of variation biomarker values. The selection of biomarker principal components involved cross validation of the models for estimating biological age (S1 Appendix 3D).
To aid clinical interpretation, varimax rotation ${ }^{25}$ (which seeks to increase the contribution of biomarkers strongly loaded onto a principal component and decreases the contribution of those less strongly loaded) was applied after PCA. The rotated principal components were individually characterised based on the relative contributions of their constituent biomarkers, measured via rotated factor loadings (S1 Figure 5). The rotated factor loadings and the eigenvalues of the principal components were similar when run on the healthy subpopulation and the whole population (data not shown), thus only the results for the whole population were used in all subsequent analyses, for consistency in interpretation.

C. Estimation of biological ages and mortality score

Previous studies ${ }^{13,25,26}$ that compared several estimation methods applied to clinical biomarkers reported that Klemera Doubal biological ages ${ }^{27}$ appeared to have the highest predictive power for health outcomes, followed by multiple linear regression (MLR), then PCA. A recent review of biological age estimation methods ${ }^{9}$ compared statistical properties and limitations of these three methods, and it listed more limitations in the MLR and PCA methods than in the Klemera Doubal method (KDM).

This study investigated the three main estimation methods, which were all based on linear regressions of chronological age with candidate biomarkers. Modifications were made, including the integration of the PCA method (described in the previous section) into both the $M L R^{25,28}$ and KDM, ${ }^{25}$ to improve the statistical properties of these methods.

Method 1: Klemera Doubal Method (KDM) ${ }^{27}-$

This method assumes that its constituent biomarkers are uncorrelated and is based on two principles: (1) biological age summarises the differences between individuals' actual biomarker levels x_{j}, where $j=1, \ldots$, m for m candidate biomarkers, and characteristic biomarker levels for their chronological age; (2) biomarkers with stronger linear relationships to chronological age contribute more to biological age. ${ }^{27}$ The KDM biological age was estimated by linearly regressing each biomarker x_{j} against chronological age, then taking the weighted sum of all the regression results, with the following form:

$$
\text { Biological age } \propto \sum_{j=1}^{\mathrm{m}}\left(\frac{k_{j}}{s_{j}^{2}}\right)\left(x_{j}-q_{j}\right)
$$

where $q_{j}=$ intercept, $k_{j}=$ coefficient and $s_{j}=$ standard error from the $\mathrm{j}^{\text {th }}$ chronological age-biomarker regression

Klemera and Doubal proposed a second version of biological age, which some studies found controversial, ${ }^{16,25}$ as it included chronological age as a biomarker. In order to assess biological ages both in isolation and jointly with chronological age, only the version of KDM age without chronological age as a biomarker was used.

Since this method does not involve biomarker selection and assumes that its constituent biomarkers are uncorrelated, this method was applied with and without prior PCA on candidate biomarkers. ${ }^{25}$ The former approach reduces interdependence between its constituents, while the latter approach was common practice. ${ }^{9,13,16,25,26}$

Method 2: Stepwise MLR -
This method represents biological age by the linear combination of biomarkers that explains the most variation in chronological age. This biological age is thus not statistically independent of chronological age, limiting its scope for prediction of health outcomes.

The standard MLR method, where biological age is the predicted value of chronological age regressed on all candidate biomarkers, ${ }^{9,13}$ was extended with a stepwise procedure that iteratively selected biomarkers that most explained chronological age, in the presence of other selected biomarkers. Stepwise regression was chosen over other variable selection or shrinkage methods, as multiple testing could be accounted for easily, through the specification of modified p-value thresholds. The Bonferroni-corrected p-value at the 0.05 level ($0.05 /$ number of variables) was used as the stepwise selection criteria, to adjust for multiple testing and reduce correlation between selected biomarkers. This method was also applied with and without prior PCA on candidate biomarkers, for comparison with results from Method 1.

Benchmark for comparison: Estimation of mortality score -
Previous studies derived a mortality-based score ${ }^{29}$ and biological age ${ }^{30}$ for cause-specific mortality and comorbidity prediction, using penalised Cox proportional hazards models for variable selection. For consistency with the estimation of biological ages in this study, a benchmark mortality score was derived using the same biomarker panel, with a Bonferroni-corrected stepwise Cox model. The predictive power of the mortality score and the biological ages for CHD events and age-related hospital admissions were compared using C-indices from unadjusted Cox models stratified by sex and subpopulation (S1 Appendix $3 F)$.

Biological ages were estimated separately by sex, due to differences in biomarker-age trends by sex (S1 Figure 3). Additionally, mortality from chronic disease, prior and incident CHD and age-related hospital admissions were different between sexes (S1 Table 7).

D. Cross-validation of biological age estimation

Cross-validation was carried out to check the stability of estimated biological ages and to identify the optimal number of biomarker principal components to include in the models. The initial criterion for the latter was the search for an elbow point in a plot of prediction errors for biological age estimation models run with an increasing number of principal components, ordered by decreasing eigenvalue, where beyond the elbow point there were diminishing changes in prediction error by increasing the number of principal components included in the model. If no clear elbow points were apparent, a second criterion of an eigenvalue threshold of $>0.33(1 / 3$ of the average variation in biomarker measurements described by a single biomarker in the UK Biobank) was
imposed, to avoid the inclusion of principal components that captured little biomarker variation in the population.

E. Biomarker importance in biological ages

The relative importance of each biomarker was calculated as the proportion of variance in the biological ages explained by each constituent biomarker in the presence of the other constituent biomarkers (R^{2}). For both biological ages, it was derived using the Fabbris/Genizi/Johnson method ${ }^{31}$ implemented in the R package 'relaimpo,,${ }^{32}$ as recommended by a review of relative importance estimation methods in situations where there are large numbers of variables. ${ }^{33}$

F. Prediction of adverse health outcomes

For each of the 3 outcomes defined in S1 Appendix 2, Cox proportional hazards models were run on the same subpopulations as those used in the biological age estimation, but excluding participants with prior events. They were stratified by sex and adjusted for Index of Multiple Deprivation 2010 quintile, smoking status, alcohol consumption, assessment centre, and age combinations (all variables were categorical except ages). Age combinations used were: (1) chronological age, (2) biological age, and (3) both chronological and biological age. Combination (3) was not used for stepwise regression ages, as stepwise regression ages cannot be combined with chronological age in a prediction model due to double counting.

Predictive power was assessed using Harrell's C-index, a measure for survival models equivalent to area under the receiver operating characteristic curve, both separately for the healthy and poor health subpopulations and for the whole population. The C-index and its standard errors were calculated using Kendall's tau. ${ }^{34}$

G. Explanatory power of biological ages

To investigate the relationship between biological and chronological ages without reference to a specific health outcome, the proportion of variation in chronological age explained by each biological age was estimated in terms of R^{2} from univariate linear regressions. The proportion of the chronological age effect on mortality, CHD and hospital admission risk that was explained by each biological age was also estimated. The proportion of the biological age effect for each outcome explained by chronological age was also estimated in a similar way. This was done by comparing the log partial likelihoods of pairs of nested models, an extension of likelihood ratio tests:

$$
\begin{aligned}
& \text { Proportion of CA explained by } \mathrm{BA}=\frac{\left(l_{C A}-l_{\text {base }}\right)-\left(l_{B A+C A}-l_{C A}\right)}{\left(l_{C A}-l_{\text {base }}\right)} \\
& \text { Proportion of BA explained by } \mathrm{CA}=\frac{\left(l_{B A}-l_{\text {base }}\right)-\left(l_{B A+C A}-l_{B A}\right)}{\left(l_{B A}-l_{\text {base }}\right)}
\end{aligned}
$$

where l_{m} : log-likelihood of model m, base: adjusted model without chronological or biological age, $C A$: adjusted model with chronological age only, $B A$: adjusted model with biological age only and $B A+C A$: adjusted model with both biological and chronological age

Ratios were taken of these proportions to derive the relative contributions of biological age and chronological age to the combined age effect in predicting these health outcomes. The log-likelihood proportions above are equivalent to comparisons of the Nagelkerke pseudo- $\mathrm{R}^{2}{ }^{35}$ of the same pairs of models, which are approximations of R^{2} for Cox models. Since biomarker importances are expressed in terms of R^{2}, biomarker importances and the relative explanatory power of chronological and biological ages can be jointly assessed in terms of R^{2} or its approximations.

H. Assessing calibration of biological ages

To assess the calibration of biological ages with chronological age, the means and standard deviations for stepwise regression and KDM ages were plotted against chronological age, for each 2.5-year chronological age band in the age range of 40-70. A perfectly calibrated biological age would have mean biological age equal to mean chronological age in each age band. For biological ages that are not well calibrated, further transformations in order to recalibrate stepwise regression age to chronological age have been proposed ${ }^{6}$ but are only necessary at implementation stage.

To assess the risk calibration of biological ages, participants were stratified into 3 predicted risk groups based on the difference between their biological age (BA) and chronological age (CA): ${ }^{16}$ (1) BA - CA < -5 years (biologically younger), (2) $|\mathrm{BA}-\mathrm{CA}|<5$ years, and (3) BA - CA > 5 years (biologically older). For each biological age, sex and health outcome, Kaplan-Meier survival curves stratified by predicted risk group were plotted and assessed for overlap.

All statistical analyses were run in R version 3.3.3.

4. Supplementary results

Results of the biological age estimation and the prediction of health outcomes

The model coefficients for the KDM and stepwise regression biological ages for the health subpopulation are tabulated in S1 Table 9. Further results for the KDM and stepwise regression biological ages and their prediction of health outcomes are listed in S1 Tables 10-13. The reporting of these results and other aspects of this study are summarised in the Guidelines for Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) ${ }^{36}$ checklist for this study (S1 Table 14).

Cross-validation of biological age estimation

For the KDM and stepwise regression ages, prediction errors (mean square errors) were plotted against the numbers of principal components included in the models (S1 Figure 6). There were no clear elbow points in any subpopulation for either biological age. Hence the optimal number of principal components was determined to be 51 , based on the eigenvalue threshold of >0.33 per principal component.

Calibration of biological ages

For a biological age to be communicated in terms of an age, it had to be calibrated to be similar to chronological age on average in the population. In each sex in the healthy subpopulation, the KDM age was well-calibrated with chronological age, but the stepwise regression age was too high at younger chronological ages and too low at older chronological ages (S1 Figure 7). Further rescaling to calibrate stepwise regression age to chronological age is not relevant for assessing its constituents and its relative predictive power, but is important for implementation in a clinical setting.

In order to communicate additional health information to chronological age, the difference between individuals' biological and chronological age had to be risk calibrated to demonstrate worse prognosis (if biological age was greater than chronological age) and vice versa, for each health outcome. For healthy men, there were slight differences in mortality, CHD and hospital admissions after 3-8 years from baseline, between the predicted risk groups based on the KDM age. These differences were smaller or undetectable for women. For the stepwise regression biological age, the predicted risk groups clearly differentiated risk of each health outcome after 4 years from baseline, but in the reverse direction (S1 Figure 8).

Predictive power of biological ages

In unadjusted models for predicting health outcomes, both KDM and stepwise regression biological ages were more predictive of CHD events and hospital admissions than the mortality score in the healthy subpopulation (respective improvements in C-indices for CHD: 0.135 and 0.144 in men, 0.109 and 0.103 in women; for hospital admissions: 0.111 and 0.112 in men, 0.068 and 0.073 in women; S1 Table 12). The mortality score performed only slightly better than chance (equivalent to a C-index of 0.5). Both biological ages were slightly worse at predicting mortality due to chronic disease compared to the mortality score in the same subpopulation (respective improvements in C-indices: -0.015 and -0.012 in men, -0.013 and -0.018 in women). Based on Cindices from the adjusted prediction models (S1 Table 13), both KDM and stepwise regression biological ages were similarly predictive of CHD and less predictive of mortality and hospital admissions than chronological age in the healthy subpopulation, but had similar predictive power to the biological ages in the whole population.

The combination of chronological age and KDM age was the most predictive of mortality (S1 Table 13). Supplementing chronological age with KDM age did not increase C-indices in the healthy subpopulation (0.007 in men, 0.002 in women) but increased C-indices in the whole population (0.031 in men, 0.014 in women). Predictive power was significantly higher for mortality than for hospital admissions in the healthy subpopulation (C-indices: 0.731 [Standard error (SE): 0.0081] vs 0.662 [0.0029] in men, 0.690 [0.0092] vs 0.634 [0.0028] in women), and for men compared to women. Predictive power was significantly higher for mortality than for CHD in healthy men (0.731 [0.0081] vs 0.689 [0.0066]) but not women (0.690 [0.0092] vs 0.743 [0.0111]). Stepwise regression age cannot be combined with chronological age in a prediction model, because it was directly constructed by regressing its constituent biomarkers against chronological age.

Supplementary tables and figures

Table 1: List of in-scope British National Formulary (BNF) Chapters and Sections related to chronic disease

BNF Chapter	BNF Section
Cardiovascular System	Anti-Arrhythmic Drugs
	Anticoagulants And Protamine
	Antifibrinolytic Drugs \& Haemostatics
	Antiplatelet Drugs
	Beta-Adrenoceptor Blocking Drugs
	Diuretics
	Hypertension and Heart Failure
	Lipid-Regulating Drugs
	Local Sclerosants
	Nit,Calc Block \& Other Antianginal Drugs
	Positive Inotropic Drugs
	Sympathomimetics
Central Nervous System	Analgesics
	Antidepressant Drugs
	Antiepileptic Drugs
	CNS Stimulants and drugs used for ADHD
	Dementia
	Drugs Used In Nausea And Vertigo
	Drugs Used In Park'ism/Related Disorders
	Drugs Used In Psychoses \& Rel.Disorders
	Drugs Used In Substance Dependence
	Hypnotics And Anxiolytics
	Obesity
Endocrine System	Corticosteroids (Endocrine)
	Drugs Affecting Bone Metabolism
	Drugs Used In Diabetes
	Hypothalamic\&Pituitary Hormones\&Antioest
	Other Endocrine Drugs
	Thyroid And Antithyroid Drugs
Eye	Treatment Of Glaucoma
Gastro-Intestinal System	Antisecretory Drugs+Mucosal Protectants
	Antispasmod.\&Other Drgs Alt.Gut Motility
	Chronic Bowel Disorders
	Drugs Affecting Intestinal Secretions
	Dyspep\&Gastro-Oesophageal Reflux Disease
Infections	Antiviral Drugs
Malignant Disease \& Immunosuppression	Cytotoxic Drugs
	Drugs Affecting The Immune Response
	Sex Hormones \& Antag In Malig Disease
Musculoskeletal \& Joint Diseases	Drugs Used In Neuromuscular Disorders
	Drugs Used In Rheumatic Diseases \& Gout
	Soft-Tissue Disorders \& Topical Pain Rel
Nutrition And Blood	Anaemias + Other Blood Disorders
	Metabolic Disorders
Respiratory System	Bronchodilators
	Corticosteroids (Respiratory)
	Cromoglycate,Rel,Leukotriene Antagonists
	Mucolytics
	Resp Stimulants \& Pulmonary Surfactants
Skin	Preparations For Eczema And Psoriasis

Table 2: Summary statistics for chronic disease medication count at baseline in the UK Biobank

Chronic disease medication count	Persons (\%)	Men (\%)	Women (\%)
None	51.6	52.5	50.8
$1-2$	39.7	37.7	41.4
>2	8.7	9.8	7.8

Table 3: Repeated measures Pearson correlation coefficients adjusted for baseline age for each of the 74 candidate biomarkers, by sex

Biomarker name	Men	Women
Diastolic blood pressure	0.603	0.664
Systolic blood pressure	0.609	0.656
Pulse rate	0.652	0.636
Apolipoprotein A	0.753	0.716
Apolipoprotein B	0.628	0.686
Lipoprotein (a)	0.973	0.968
High density lipoprotein cholesterol	0.815	0.807
Low density lipoprotein cholesterol	0.614	0.664
Triglycerides	0.570	0.620
Mean platelet volume	0.836	0.838
Platelet count	0.725	0.746
Platelet crit	0.701	0.707
Platelet distribution width	0.649	0.640
Log C-Reactive Protein	0.543	0.656
Blood glucose	0.447	0.364
HbA1c	0.771	0.720
Insulin-like growth factor 1	0.770	0.744
Sex hormone-binding globulin	0.832	0.745
Testosterone	0.641	Not considered
Oestradiol*	Not considered	0.094
Haemoglobin concentration	0.635	0.594
HLS reticulocyte count	0.551	0.588
Immature reticulocyte fraction	0.430	0.405
Mean corpuscular volume	0.748	0.716
Mean reticulocyte volume	0.546	0.506
Mean spherical cell volume	0.706	0.691
Total red blood cell count	0.732	0.718
Red blood cell distribution width	0.566	0.480
Reticulocyte count	0.326	0.311
Mean corpuscular haemoglobin concentration	0.251	0.198
Nucleic red blood cell count*	0.013	0.003
Albumin	0.453	0.465
Alanine aminotransferase	0.482	0.326
Aspartate aminotransferase	0.445	0.329
Direct bilirubin	0.699	0.708
Total bilirubin	0.764	0.740
Gamma Glutamyltransferase	0.682	0.615
Heel bone density	0.689	0.713
Body mass index	0.931	0.925
Sitting height	0.796	0.799
Standing height	0.986	0.984
Hip circumference	0.805	0.839
Waist circumference	0.823	0.829
Waist-hip ratio	0.664	0.653
Weight	0.944	0.930
Body fat-free mass	0.945	0.914
Body fat mass	0.902	0.906
Body fat percentage	0.859	0.869
Metabolic rate	0.949	0.928
Hand grip strength/height	0.615	0.515
Alkaline Phosphatase	0.743	0.689
Calcium	0.371	0.406
Rheumatoid factor	0.755	0.856
Vitamin D	0.558	0.547
Reaction time test	0.518	0.494
Pairs matching test	0.233	0.206
Urinary microalbumin	0.400	0.357
Urinary sodium	0.325	0.296
Urinary creatinine	0.267	0.288
Urinary potassium	0.232	0.251
Urea	0.573	0.542
Creatinine	0.653	0.671
Cystatin C	0.759	0.802
Phosphate	0.409	0.393
Total protein	0.494	0.492
Urate	0.719	0.780

Forced expiratory volume in 1s/height	0.503	0.502
Forced vital capacity/height	0.655	0.649
Eosinophil count	0.619	0.603
Lymphocyte count	0.859	0.646
Monocyte count	0.420	0.341
Neutrophil count	0.539	0.528
Basophil count	0.143	0.112
Total white blood cell count	0.787	0.593

* Biomarkers with correlation coefficients of <0.1

Both baseline and repeated measurements for these biomarkers were available for 2657-9444 men and 2213-9873 women
The 36 excluded biomarkers are: pulse pressure; total cholesterol; peak expiratory flow (spirometry); heel bone density measurements represented as: Broadband ultrasound attenuation, quantitative ultrasound index, speed of sound through heel; impedance devicemeasured weight; total mass, fat mass, fat free mass and fat percentage for: trunk, left leg, right leg, left arm, right arm; Metabolic Equivalent Task (MET) minutes per week for moderate activity; MET minutes per week for vigorous activity; mean corpuscular haemoglobin; haematocrit percentage; visual acuity; hearing test; numeric memory test; fluid intelligence test; and prospective memory test.

Table 4: Missingness and Pearson correlations of best measure and supplemented lung function baseline and repeated measurements

Men:	Forced expiratory volume in 1s (FEV1)				Forced vital capacity (FVC)			
	Participants at baseline		Participants with 'accept' flagged repeat assessment		Participants at baseline		Participants with 'accept' flagged repeat assessment	
	Number	\% total	Correlation	Number	Number	\% total	Correlation	Number
Best measure	158,140	72\%	0.722	5888	158,140	72\%	0.729	5888
Remainder with 'accept' flags	9,113	4\%	0.753	140	9,113	4\%	0.828	140
All remaining readings	31,125	14\%	0.654	664	31,125	14\%	0.664	664
All readings	198,378	90\%	0.720	6692	198,378	90\%	0.729	6692
No data	20,870	10\%			20,870	10\%		
Women:	Forced expiratory volume in 1s (FEV1)				Forced vital capacity (FVC)			
	Participants at baseline		Participants with 'accept' flagged repeat assessment		Participants at baseline		Participants with 'accept' flagged repeat assessment	
	Number	\% total	Correlation	Number	Number	\% total	Correlation	Number
Best measure	183,323	70\%	0.723	5978	183,323	70\%	0.743	5978
Remainder with 'accept' flags	9,710	4\%	0.762	127	9,710	4\%	0.778	127
All remaining readings	46,423	18\%	0.585	747	46,423	18\%	0.614	747
All readings	239,456	92\%	0.709	6852	239,456	92\%	0.730	6852
No data	21,315	8\%			21,315	8\%		

Best measure lung function measurements were defined by UK Biobank. ${ }^{2}$ Two types of lung function measurements were used to supplement best measure lung function: (1) remainder with 'accept' flags and (2) all remaining readings.

Table 5: List of the 72 UK Biobank biomarkers selected for analysis, with percentage of missing data for each biomarker in the whole population

No.	Body system group	Biomarker description	\% missing
1	Cardiovascular:	Diastolic blood pressure	0.1
2		Systolic blood pressure	0.1
3		Pulse rate	0.1
4		Apolipoprotein A	12.9
5		Apolipoprotein B	5
6		Lipoprotein (a)	7.6
7		High density lipoprotein cholesterol	12.7
8		Low density lipoprotein cholesterol	4.9
9		Triglycerides	4.7
10	Clotting:	Mean platelet volume	2.9
11		Platelet count	2.9
12		Platelet crit	2.9
13		Platelet distribution width	2.9
14	Endocrine, metabolic	Log C-Reactive Protein	4.8
15	and immune:	Blood glucose	12.8
16		HbA1c	5.3
17		Insulin-like growth factor 1	5.2
18		Sex hormone-binding globulin	13.4
19		Testosterone	5.6
20	Liver:	Albumin	12.7
21		Alanine aminotransferase	4.7
22		Aspartate aminotransferase	5.1
23		Direct bilirubin	7.5
24		Total bilirubin	5.1
25		Gamma Glutamyltransferase	4.7
26	Musculoskeletal:	Heel bone density	1.8
27		Body mass index*	0.4
28		Sitting height*	0.3
29		Standing height*	0.3
30		Hip circumference*	0.2
31		Waist circumference*	0.2
32		Waist-hip ratio*	0.2
33		Weight*	0.3
34		Body fat-free mass*	1.8
35		Body fat mass*	1.9
36		Body fat percentage*	1.8
37		Metabolic rate*	1.8
38		Hand grip strength/height*	0.4
39		Alkaline Phosphatase	4.7
40		Calcium	12.7
41		Rheumatoid factor	4.7
42		Vitamin D	8.5
43	Nervous:	Reaction time test	1.1
44		Pairs matching test	3.5
45	Red blood cells:	Haemoglobin concentration	2.9
46		HLS reticulocyte count	4.6
47		Immature reticulocyte fraction	4.6
48		Mean corpuscular volume	2.9
49		Mean reticulocyte volume	4.6
50		Mean spherical cell volume	4.6
51		Total red blood cell count	2.9
52		Red blood cell distribution width	2.9
53		Reticulocyte count	4.6
54		Mean corpuscular haemoglobin concentration	2.9
55	Renal:	Urinary microalbumin	2.9
56		Urinary sodium	2.9
57		Urinary creatinine	2.7
58		Urinary potassium	2.9
59		Urea	4.8
60		Creatinine	4.7
61		Cystatin C	4.7
62		Phosphate	12.8
63		Total protein	12.8
64		Urate	4.8
65	Respiratory:	Forced expiratory volume in 1s/height*	8.9
66		Forced vital capacity/height*	8.9

67	White blood cells:	Eosinophil count	3.1
68	Lymphocyte count	3.1	
69		Monocyte count	3.1
70		Neutrophil count	3.1
71		Basophil count	3.1
72	Total white blood cell count	2.9	

* Values were standardised separately for men and women, due to large sex differences

All biochemical biomarkers were measured via blood assays unless labelled as 'urinary'

Table 6: Constituent ICD-10 codes for the age-related hospital admissions definition, ranked by hazard ratio of baseline age in the UK Biobank

No	ICD10 group	ICD-10 codes	Incident cases in UK Biobank	Hazard ratio for 10 years of age
1	Dementia	F00 F01 F03 G30	214	5.70
2	Parkinsons	G20	576	3.16
3	Chronic renal failure	N18	873	3.14
4	Osteoporosis without pathological fracture	M81	1454	2.66
5	Other disorders of fluid, electrolyte and acid-base balance	E87	554	2.29
6	Retention of urine	R33	1274	2.28
7	Transient cerebral ischaemic attacks and related syndromes	G45	508	2.27
8	Delirium	F05	54	2.27
9	Polyarthrosis	M15	913	2.19
10	Respiratory disease not infection	J69 J96	412	2.17
11	Cerebrovascular	167169	794	2.11
12	Osteoporosis	M80	546	2.07
13	Cerebral Infarction	163	574	2.07
14	Other hearing loss	H91	864	2.00
15	Other abnormal findings of blood chemistry	R79	1816	1.90
16	Renal failure	N17 N19	956	1.90
17	Neurodegenerative disease	G31	114	1.90
18	Problems related to social environment	Z60	839	1.86
19	Skin ulcer	L89 L97	308	1.83
20	Kidney urinary disorders	N28	876	1.82
21	Other arthrosis	M19	4403	1.80
22	Spinal stenosis (secondary code only)	M48	1038	1.73
23	Digestive disease	K26	1567	1.65
24	Pneumonia, organism unspecified	J18	1256	1.60
25	Blindness or low vision	H54	381	1.60
26	Dorsophathy	M41	379	1.59
27	Fall on same level from slipping, tripping and stumbling	W01	1597	1.59
28	Unspecified fall	W19	926	1.57
29	Hypotension	195	717	1.51
30	Syncope and collapse	R55	1541	1.49
31	Metabolic disorder	E83 E86	1135	1.47
32	Cognition emotion behaviour symptoms	R40 R41 R44 R45 R47	1577	1.47
33	Symptoms and signs concerning food and fluid intake	R63	1405	1.45
34	Other external	Y84 Y95 Z22 Z50 Z73 Z74 Z75 Z93 Z99	3954	1.44
35	Hemiplegia	G81	381	1.43
36	Fall	W06 W18	850	1.39
37	Urinary system symptoms	R32	918	1.37
38	Unspecified acute lower respiratory infection	J22	998	1.36
39	Nervous and musculoskeletal symptoms	R26 R29	1000	1.35
40	Other bacterial agents as the cause of diseases classified to other chapters (secondary code)	B96	1051	1.33
41	Fall on and from stairs and steps	W10	639	1.32
42	Unspecified haematuria	R31	3447	1.31
43	Abnormalities of heart beat	R00	1939	1.30
44	Personal history of other diseases and conditions	Z87	6111	1.26
45	Skin infection	L08	627	1.26
46	Infection	A04 A41 B95	3444	1.25
47	Other anaemias	D64	2237	1.25
48	Dysphagia	R13	1554	1.25
49	Pancreatic disorder	E16	230	1.23
50	Abnormal results of function studies	R94	755	1.22
51	Other functional intestinal disorders	K59	1955	1.22
52	Gangrene	RO2	137	1.22

This codelist excludes cancer or any form of neoplasms
P-values of hazard ratios for 10 years of age for each ICD-10 group were significant at the 10^{-3} level

Table 7: Number of events for each outcome in each prior health subpopulation, by sex

	Persons	Men	Women
Healthy subpopulation			
Participants at baseline	141,254	65,869	75,385
Deaths from chronic disease	2,394	1,357	1,037
Prior CHD event	0	0	0
Incident CHD event	2,693	1,987	706
Prior age-related hospital admissions	6,206	2,953	3,253
Incident age-related hospital admissions	21,627	10,317	11,310
Poor health subpopulation			
Participants at baseline	82,835	42,277	40,558
Deaths from chronic disease	7,552	4,729	2,823
Prior CHD event	12,986	9,942	3,044
Incident CHD event	6,296	4,090	2,206
Prior age-related hospital admissions	35,947	18,327	17,620
Incident age-related hospital admissions	19,254	10,023	9,231
Whole population			
Participants at baseline	480,019	219,248	260,771
Deaths from chronic disease	18,799	11,362	7,437
Prior CHD event	12,986	9,942	3,044
Incident CHD event	18,757	12,676	6,081
Prior age-related hospital admissions	74,811	35,401	39,410
Incident age-related hospital admissions	93,716	43,700	50,016

Table 8: Pearson correlation coefficients of biomarkers with chronological age ranked by magnitude, in the Healthy subpopulation, by sex

Healthy men

Ranking	Biomarker	Pearson correlation coefficient
1		-0.377
2	Forced expiratory volume in 1s/height	0.317
3	Cystatin C	0.315
4	Sex hormone-binding globulin	-0.313
5	Sysed vital capacity/height	0.295
6	Albumin blood pressure	-0.283
7	Reaction time test	-0.281
8	Insulin-like growth factor 1	-0.259
9	Hand grip strength/height	-0.238
10	Metabolic rate	-0.224
11	Body fat-free mass	-0.214
12	HbA1c	0.208
13	Mean corpuscular volume	0.186
14	Sitting height	-0.177
15	Pairs matching test	-0.169
16	Waist-hip ratio	0.167
17	Mean spherical cell volume	0.166
18	Urea	0.159
19	Body fat percentage	0.151
20	Standing height	-0.148
21	Total protein	-0.146
22	Red blood cell distribution width	0.145
23	Alanine aminotransferase	-0.140
24	Apolipoprotein A	0.139
25	Mean reticulocyte volume	0.135
26	Monocyte count	0.126
27	Log C-Reactive Protein	0.125
28	Total red blood cell count	-0.125
29	Blood glucose	0.122
30	Calcium	-0.120
31	Urinary sodium	-0.119
32	Vitamin D	0.118
33	Urinary microalbumin	0.118
34	Platelet crit	-0.102
35	Neutrophil count	0.102

Healthy women

Ranking	Biomarker	Pearson correlation coefficient
1		-0.441
2	Forced expiratory volume in 1s/height	0.404
3	Cystatin C	-0.381
4	Forced vital capacity/height	0.373
5	Systolic blood pressure	0.359
6	Low density lipoprotein	0.342
7	HbA1c	0.336
8	Apolipoprotein B	0.328
9	Alkaline Phosphatase	-0.318
10	Hand grip strength/height	0.317
11	Urea	-0.309
12	Insulin-like growth factor 1	-0.308
13	Reaction time test	0.235
14	Triglycerides	-0.233
15	Heel bone density	-0.217
16	Sitting height	0.200
17	Aspartate aminotransferase	0.192
18	Urate	0.185
19	Haemoglobin concentration	-0.184
20	Metabolic rate	0.182
21	Blood glucose	0.179
22	Calcium	-0.178
23	Body fat-free mass	-0.169
24	Standing height	-0.159
25	Pairs matching test	0.153
26	Waist-hip ratio	0.151
27	Body fat percentage	0.148
28	Apolipoprotein A	0.144
29	Phosphate	0.138
30	Log C-Reactive Protein	0.127
31	Alanine aminotransferase	0.127
32	Total red blood cell count	-0.127
33	Direct bilirubin	0.126
34	Gamma Glutamyltransferase	-0.125
35	Urinary sodium	0.118
	Urinary microalbumin	

36	High density lipoprotein	0.102	36	Waist circumference	0.108
37	Weight	-0.093	37	Diastolic blood pressure	0.107
38	Total white blood cell count	0.086	38	Testosterone	-0.103
39	Apolipoprotein B	0.085	39	High density lipoprotein	0.102
40	Urinary creatinine	-0.085	40	Urinary creatinine	-0.092
41	Diastolic blood pressure	0.083	41	Neutrophil count	-0.089
42	Waist circumference	0.082	42	Vitamin D	0.087
43	Low density lipoprotein	0.079	43	Platelet crit	-0.084
44	Platelet count	-0.073	44	Body fat mass	0.062
45	Reticulocyte count	-0.065	45	Mean platelet volume	-0.060
46	Body fat mass	0.057	46	Mean spherical cell volume	0.060
47	Phosphate	-0.054	47	Mean corpuscular volume	0.058
48	Alkaline Phosphatase	0.054	48	Sex hormone-binding globulin	-0.056
49	Basophil count	0.047	49	Lymphocyte count	0.055
50	HLS reticulocyte count	-0.047	50	Body mass index	0.054
51	Heel bone density	-0.042	51	Total white blood cell count	-0.054
52	Mean corpuscular haemoglobin concentration	-0.041	52	Albumin	-0.053
53	Aspartate aminotransferase	-0.040	53	Pulse rate	0.052
54	Pulse rate	0.039	54	Lipoprotein (a)	0.049
55	Hip circumference	-0.038	55	Total protein	-0.043
56	Rheumatoid factor	0.036	56	Platelet count	-0.043
57	Direct bilirubin	-0.035	57	Total bilirubin	-0.040
58	Platelet distribution width	0.034	58	Mean reticulocyte volume	0.039
59	Mean platelet volume	-0.034	59	Basophil count	-0.039
60	Haemoglobin concentration	-0.032	60	Creatinine	0.038
61	Creatinine	0.029	61	Platelet distribution width	0.035
62	Lymphocyte count	-0.026	62	Rheumatoid factor	0.031
63	Total bilirubin	-0.018	63	Weight	-0.023
64	Body mass index	-0.018	64	Monocyte count	0.021
65	Urinary potassium	0.013	65	Hip circumference	0.021
66	Testosterone	-0.010	66	Urinary potassium	0.013
67	Immature reticulocyte fraction	0.007	67	Eosinophil count	-0.012
68	Urate	0.006	68	Immature reticulocyte fraction	-0.009
69	Triglycerides	0.006	69	Reticulocyte count	0.007
70	Gamma Glutamyltransferase	-0.003	70	Red blood cell distribution width	0.007
71	Lipoprotein (a)	-0.002	71	Mean corpuscular haemoglobin concentration	0.006
72	Eosinophil count	0.001	72	HLS reticulocyte count	-0.002

Table 9: Model coefficients for (A) Klemera Doubal (KDM) and (B) stepwise regression biological ages, in the Healthy subpopulation, by sex
(A) Klemera Doubal (KDM) ages

Biomarker principal component number and description		Healthy men			Healthy women		
		q_{j}	k_{j}	s_{j}	q_{j}	k_{j}	S_{j}
PC1	General adiposity	55.224	0.004	11.865	56.673	-1.035	10.628
PC2	Total haemoglobin volume	56.276	1.035	11.814	58.763	-3.455	10.344
PC3	Height	56.007	3.638	10.626	56.429	3.049	10.038
PC4	Albumin	56.235	5.479	10.676	55.896	-0.074	10.896
PC5	Neutrophil count	55.806	-1.896	11.633	56.036	-0.543	10.875
PC6	Immature red blood cell volume	55.353	-2.078	11.565	55.880	0.151	10.894
PC7	LDL and ApoB	55.047	-0.746	11.824	55.293	-4.247	9.166
PC8	Reticulocyte count	55.226	0.055	11.865	56.530	-1.526	10.739
PC9	Urinary potassium and creatinine	55.248	-0.101	11.864	55.950	0.251	10.893
PC10	Blood pressure	54.700	-2.940	11.374	56.959	-3.768	9.829
PC11	HDL and ApoA	55.715	0.980	11.811	55.797	0.126	10.895
PC12	Aminotransferases	55.303	0.325	11.860	57.384	-4.235	10.206
PC13	Bilirubin	55.759	1.016	11.774	55.432	1.558	10.719
PC14	Platelet count	55.067	-0.343	11.858	55.798	0.319	10.888
PC15	Red blood cell haemoglobin concentration	55.442	-1.244	11.798	55.889	-0.048	10.896
PC16	Testosterone	54.896	-0.385	11.862	56.129	-0.345	10.896
PC17	Lung function/height	57.442	-5.247	9.508	57.285	-4.819	8.697
PC18	Blood glucose	55.467	2.362	11.694	56.254	3.519	10.508
PC19	Platelet cell volume	55.216	-0.181	11.864	55.929	-0.722	10.869
PC20	LP(a)	55.233	0.081	11.865	55.886	0.906	10.858
PC21	Pairs matching test	55.541	-3.107	11.464	56.001	-2.285	10.670
PC22	Rheumatoid factor	55.234	0.597	11.851	55.898	0.455	10.887
PC23	Bone density	55.485	-0.830	11.836	55.451	-2.792	10.587
PC24	Vitamin D	55.180	0.897	11.832	55.882	0.242	10.893
PC25	IGF-1	56.478	5.561	10.692	56.011	3.770	10.242
PC26	Urinary microalbumin	55.491	3.197	11.636	56.257	2.829	10.767
PC27	Basophil count	55.356	1.306	11.809	55.893	-0.153	10.895
PC28	Central adiposity	56.393	-4.109	11.274	56.605	-3.698	10.338
PC29	Eosinophil count	55.214	0.838	11.836	56.041	0.829	10.869
PC30	Alkaline phosphatase	55.614	-2.022	11.738	56.426	-5.813	9.215
PC31	Pulse rate	55.576	-1.408	11.783	55.926	-1.888	10.763
PC32	Red blood cell width	55.694	-3.190	11.552	55.904	-0.203	10.894
PC33	Reaction time test	56.417	-5.222	10.788	55.963	-4.210	10.109
PC34	Sex hormone-binding globulin	58.143	7.049	11.096	56.932	-2.355	10.600
PC35	Hand grip strength/height	56.156	5.354	10.716	56.783	5.022	9.845
PC36	Phosphate	54.881	1.169	11.806	55.469	-2.109	10.724
PC37	Lymphocyte count	55.340	-0.547	11.855	55.902	-2.055	10.722
PC38	Triglycerides	55.226	0.008	11.865	57.879	6.395	9.838
PC39	Urinary sodium	55.393	0.634	11.847	55.754	0.477	10.888
PC40	Monocyte count	54.981	2.936	11.544	56.276	1.301	10.841
PC41	Gamma glutamyltransferase	55.145	0.680	11.847	57.554	4.670	10.325
PC42	Urea	54.943	2.177	11.690	56.967	4.759	9.985
PC43	HbA1c	56.395	4.928	11.232	57.306	6.937	9.638
PC44	Platelet distribution width	55.217	0.071	11.865	55.964	0.583	10.882
PC45	Log C-reactive protein	56.097	4.298	11.264	56.620	4.315	10.172
PC46	Reticulocyte fraction	55.424	1.087	11.821	56.028	0.913	10.862
PC47	Cystatin C	55.163	-6.091	10.883	58.861	-7.437	9.137
PC48	Muscle mass	55.919	-6.416	10.722	56.018	-4.356	10.485
PC49	Calcium	55.023	-3.212	11.488	55.788	3.217	10.429
PC50	Total protein	55.330	2.042	11.695	55.903	-1.683	10.770
PC51	Urate	54.829	0.870	11.845	59.192	6.360	9.978

$q_{j}=$ intercept, $k_{j}=$ coefficient and $s_{j}=$ square root of residual variance for the $j^{\text {th }}$ biomarker component

Biomarker principal component number and description		Healthy men	Healthy women
		Coefficients	
(Intercept)		59.015	55.942
PC1	General adiposity	0.189	0.146
PC2	Total haemoglobin volume	0.491	-0.264
PC3	Height	-0.288	-
PC4	Albumin	1.017	0.410
PC5	Neutrophil count	-0.423	0.225
PC6	Immature red blood cell volume	-0.398	-0.312
PC7	LDL and ApoB	-0.455	-0.720
PC8	Reticulocyte count	0.156	0.087
PC9	Urinary potassium and creatinine	0.332	0.203
PC10	Blood pressure	-1.255	-0.988
PC11	HDL and ApoA	0.570	0.513
PC12	Aminotransferases	0.397	-0.182
PC13	Bilirubin	-0.134	-
PC14	Platelet count	-0.520	-0.314
PC15	Red blood cell haemoglobin concentration	-	0.084
PC16	Testosterone	0.687	1.556
PC17	Lung function/height	-1.103	-1.030
PC18	Blood glucose	0.401	0.486
PC19	Platelet cell volume	-0.432	-0.247
PC20	LP(a)	-	-
PC21	Pairs matching test	-0.520	-0.379
PC22	Rheumatoid factor	0.154	0.066
PC23	Bone density	-0.128	-0.825
PC24	Vitamin D	0.682	0.512
PC25	IGF-1	0.822	1.218
PC26	Urinary microalbumin	0.312	0.617
PC27	Basophil count	-	-0.111
PC28	Central adiposity	-0.860	-0.176
PC29	Eosinophil count	-0.186	-0.250
PC30	Alkaline phosphatase	-0.106	-0.790
PC31	Pulse rate	0.119	-
PC32	Red blood cell width	-0.422	-
PC33	Reaction time test	-1.042	-0.918
PC34	Sex hormone-binding globulin	2.661	-0.075
PC35	Hand grip strength/height	0.430	0.679
PC36	Phosphate	0.180	-0.283
PC37	Lymphocyte count	0.395	-
PC38	Triglycerides	0.416	0.441
PC39	Urinary sodium	1.056	1.067
PC40	Monocyte count	0.472	0.187
PC41	Gamma glutamyltransferase	-0.113	-0.265
PC42	Urea	0.801	1.110
PC43	HbA1c	0.918	1.382
PC44	Platelet distribution width	0.328	0.116
PC45	Log C-reactive protein	-0.199	-0.289
PC46	Reticulocyte fraction	-0.187	-0.212
PC47	Cystatin C	-1.774	-1.483
PC48	Muscle mass	-1.182	-0.519
PC49	Calcium	0.139	0.660
PC50	Total protein	0.757	1.189
PC51	Urate	-0.398	-0.490

Table 10: Importances of the 51 biomarker principal components in the Klemera Doubal (KDM) ages for healthy men (left) and women (right)

Healthy men

Rank	Biomarker principal component	Proportion of total \mathbf{R}^{2} (\%)
1	Lung function/height	12.4
2	Reaction time test	6.9
3	IGF-1	6.7
4	Cystatin C	6.7
5	Hand grip strength/height	6.4
6	Albumin	6.3
7	Sex hormone-binding globulin	6.0
8	Muscle mass	5.9
9	Height	5.6
10	Blood pressure	3.5
11	HbA1c	3.5
12	Central adiposity	2.9
13	Pairs matching test	2.6
14	Log C-reactive protein	2.5
15	Calcium	2.1
16	Immature red blood cell volume	2.0
17	Red blood cell width	1.8
18	Total protein	1.7
19	Monocyte count	1.5
20	Urea	1.5
21	Urinary microalbumin	1.4
22	Blood glucose	1.2
23	Neutrophil count	1.1
24	HDL and ApoA	0.8
25	Vitamin D	0.6
26	Alkaline phosphatase	0.6
27	Total haemoglobin volume	0.6
28	General adiposity	0.5
29	Urinary sodium	0.5
30	LDL and ApoB	0.4
31	Phosphate	0.4
32	Pulse rate	0.4
33	Bilirubin	0.4
34	Red blood cell haemoglobin concentration	0.3
35	Testosterone	0.3
36	Platelet count	0.3
37	Basophil count	0.3
38	Urate	0.2
39	Reticulocyte count	0.2
40	Bone density	0.2
41	Aminotransferases	0.2
42	Triglycerides	0.2
43	Reticulocyte fraction	0.2
44	Gamma glutamyltransferase	0.1
45	Rheumatoid factor	0.1
46	Eosinophil count	0.1
47	Lymphocyte count	0.1
48	Urinary potassium and creatinine	0.1
49	Platelet distribution width	0.0
50	Platelet cell volume	0.0
51	LP(a)	0.0

Healthy women

Rank	Biomarker principal component	Proportion of total R^{2} (\%)
1	Lung function/height	10.3
2	Cystatin C	8.0
3	LDL and ApoB	7.0
4	Alkaline phosphatase	6.6
5	HbA1c	5.9
6	Hand grip strength/height	5.6
7	Urea	4.9
8	Blood pressure	4.9
9	Reaction time test	4.6
10	IGF-1	4.0
11	Height	3.8
12	Triglycerides	3.7
13	Urate	3.2
14	Aminotransferases	2.8
15	Log C-reactive protein	2.2
16	Bone density	2.2
17	Total haemoglobin volume	2.1
18	Gamma glutamyltransferase	1.9
19	Blood glucose	1.9
20	Central adiposity	1.8
21	Muscle mass	1.8
22	Calcium	1.7
23	Pairs matching test	1.3
24	Phosphate	1.0
25	Sex hormone-binding globulin	0.8
26	General adiposity	0.8
27	Urinary microalbumin	0.7
28	Bilirubin	0.7
29	Lymphocyte count	0.5
30	Pulse rate	0.4
31	Reticulocyte count	0.4
32	Total protein	0.3
33	HDL and ApoA	0.3
34	Urinary sodium	0.3
35	Albumin	0.2
36	LP(a)	0.2
37	Testosterone	0.2
38	Vitamin D	0.2
39	Monocyte count	0.1
40	Platelet cell volume	0.1
41	Platelet distribution width	0.1
42	Urinary potassium and creatinine	0.1
43	Neutrophil count	0.1
44	Reticulocyte fraction	0.1
45	Platelet count	0.1
46	Eosinophil count	0.1
47	Red blood cell width	0.1
48	Rheumatoid factor	0.1
49	Immature red blood cell volume	0.1
50	Basophil count	0.0
51	Red blood cell haemoglobin concentration	0.0

Table 11: Relative contribution (as a percentage of the total contribution of biological and chronological ages) of Klemera Doubal (KDM) biological age and chronological age in explaining each health outcome, in (A) the main analysis (top) and (B) when using the reduced biomarker panel (bottom), for healthy men and women

(A) Main analysis

	Death from chronic disease			CHD event or death			Age-related hospital admissions		
	CA alone	CA and BA	BA alone	CA alone	CA and BA	BA alone	CA alone	CA and BA	BA alone
Men									
Healthy subset	28.3	63.5	8.2	29.5	63.8	6.7	34.7	61.4	4.0
Poor health subset	1.9	39.4	58.8	12.6	53.5	33.9	17.7	59.5	22.8
Whole population	8.3	56.6	35.1	17.3	62.2	20.4	20.8	64.5	14.7
Women									
Healthy subset	39.0	58.3	2.7	10.0	61.9	28.1	39.6	58.7	1.7
Poor health subset	4.7	44.2	51.1	7.1	44.2	48.7	7.2	54.2	38.6
Whole population	18.9	60.8	20.4	11.0	57.0	32.0	18.8	66.1	15.1

(B) Using the reduced biomarker panel

	Death from chronic disease			CHD event or death				Age-related hospital admissions		
	CA alone	CA and BA	BA alone	CA alone	CA and BA	BA alone	CA alone	CA and BA	BA alone	
Men	47.0	49.9	3.1	37.1	55.7	7.2	50.0	48.2	1.9	
Healthy subset	9.9	43.0	47.1	30.4	49.4	20.2	38.0	50.1	11.9	
Poor health subset	23.0	55.2	21.9	34.4	54.3	11.3	42.5	51.7	5.8	
Whole population										
Women	35.0	60.3	4.7	9.3	61.1	29.7	39.8	58.2	2.0	
Healthy subset	9.3	48.0	42.7	9.9	45.6	44.5	11.0	54.7	34.4	
Poor health subset	20.4	61.3	18.3	12.8	58.4	28.8	21.2	65.1	13.6	
Whole population	20.3									

[^0]Table 12: Harrell's C-indices (with standard errors) for mortality score and biological ages, for each outcome and subpopulation in the main analysis (unadjusted)

	Death from chronic disease				
	Mortality score	Stepwise regression age	Klemera Doubal age	Improvement of Stepwise regression age over mortality score	Improvement of Klemera Doubal age over mortality score
Men				-0.012	
Healthy subset	$0.701(0.0081)$	$0.686(0.0081)$	$0.689(0.0081)$	-0.015	-0.050
Poor health subset	$0.737(0.0043)$	$0.640(0.0043)$	$0.687(0.0043)$	-0.097	-0.026
Whole population	$0.762(0.0028)$	$0.707(0.0028)$	$0.736(0.0028)$	-0.055	-0.018
Women				-0.013	-0.071
Healthy subset	$0.653(0.0092)$	$0.640(0.0092)$	$0.635(0.0092)$	-0.104	-0.038
Poor health subset	$0.691(0.0056)$	$0.587(0.0056)$	$0.620(0.0056)$	-0.056	
Whole population	$0.721(0.0034)$	$0.665(0.0034)$	$0.683(0.0034)$		

	CHD event or death				
	Chronological age	Stepwise regression age	Klemera Doubal age	Improvement of Stepwise regression age over mortality score	Improvement of Klemera Doubal age over mortality score
Men					
Healthy subset	$0.514(0.0066)$	$0.658(0.0066)$	$0.649(0.0066)$	0.144	0.135
Poor health subset	$0.508(0.0046)$	$0.605(0.0046)$	$0.632(0.0046)$	0.097	0.124
Whole population	$0.498(0.0026)$	$0.663(0.0026)$	$0.677(0.0026)$	0.165	0.179
Women					
Healthy subset	$0.602(0.0111)$	$0.705(0.0111)$	$0.711(0.0111)$	0.103	0.109
Poor health subset	$0.520(0.0063)$	$0.639(0.0063)$	$0.687(0.0063)$	0.119	0.167
Whole population	$0.513(0.0038)$	$0.698(0.0038)$	$0.729(0.0038)$	0.185	

	Age-related hospital admissions				
	Mortality score	Stepwise regression age	Klemera Doubal age	Improvement of Stepwise regression age over mortality score	Improvement of Klemera Doubal age over mortality score
Men				0.112	0.111
Healthy subset	$0.504(0.0029)$	$0.616(0.0029)$	$0.615(0.0029)$	0.076	0.09
Poor health subset	$0.503(0.0030)$	$0.579(0.0030)$	$0.597(0.0030)$	0.120	
Whole population	$0.501(0.0014)$	$0.621(0.0014)$	$0.630(0.0014)$		
Women				0.073	0.068
Healthy subset	$0.518(0.0028)$	$0.591(0.0028)$	$0.586(0.0028)$	0.072	
Poor health subset	$0.510(0.0031)$	$0.560(0.0031)$	$0.582(0.0031)$	0.090	
Whole population	$0.506(0.0013)$	$0.597(0.0013)$	$0.605(0.0013)$	0.091	0.0

Table 13: Harrell's C-indices (with standard errors) for chronological age and biological ages, for each outcome and subpopulation in the (A) main analysis (top) and when (B) using the reduced biomarker panel (bottom) (adjusted for environmental factors and health behaviours)

(A) Main analysis

	Death from chronic disease				
	Chronological age	Stepwise regression age	Klemera Doubal age	Klemera Doubal age and Chronological age	Improvement of Klemera Doubal over Chronological age
Men					
Healthy subset	$0.724(0.0081)$	$0.699(0.0081)$	$0.702(0.0081)$	$0.731(0.0081)$	0.007
Poor health subset	$0.658(0.0043)$	$0.674(0.0043)$	$0.704(0.0043)$	$0.705(0.0043)$	0.047
Whole population	$0.725(0.0028)$	$0.730(0.0028)$	$0.746(0.0028)$	$0.756(0.0028)$	0.031
Women					0.002
Healthy subset	$0.688(0.0092)$	$0.665(0.0092)$	$0.660(0.0092)$	$0.690(0.0092)$	0.025
Poor health subset	$0.617(0.0056)$	$0.620(0.0056)$	$0.639(0.0056)$	$0.642(0.0056)$	0.014
Whole population	$0.699(0.0034)$	$0.688(0.0034)$	$0.697(0.0034)$	$0.713(0.0034)$	

	CHD event or death				
	Chronological age	Stepwise regression age	Klemera Doubal age	Klemera Doubal age and Chronological age	Improvement of Klemera Doubal over Chronological age
Men					
Healthy subset	$0.683(0.0066)$	$0.678(0.0066)$	$0.671(0.0066)$	$0.689(0.0066)$	0.006
Poor health subset	$0.628(0.0046)$	$0.628(0.0046)$	$0.645(0.0046)$	$0.650(0.0046)$	0.022
Whole population	$0.699(0.0026)$	$0.693(0.0026)$	$0.702(0.0026)$	$0.714(0.0026)$	0.015
Women					0.023
Healthy subset	$0.720(0.0111)$	$0.728(0.0111)$	$0.733(0.0111)$	$0.743(0.0111)$	0.031
Poor health subset	$0.671(0.0063)$	$0.677(0.0063)$	$0.707(0.0063)$	$0.710(0.0063)$	0.028
Whole population	$0.739(0.0038)$	$0.740(0.0038)$	$0.759(0.0038)$	$0.767(0.0038)$	

	Age-related hospital admissions				
	Chronological age	Stepwise regression age	Klemera Doubal age	Klemera Doubal age and Chronological age	Improvement of Klemera Doubal over Chronological age
Men					
Healthy subset	$0.660(0.0029)$	$0.642(0.0029)$	$0.640(0.0029)$	$0.662(0.0029)$	0.002
Poor health subset	$0.604(0.0030)$	$0.596(0.0030)$	$0.609(0.0030)$	$0.615(0.0030)$	0.011
Whole population	$0.677(0.0014)$	$0.666(0.0014)$	$0.673(0.0014)$	$0.685(0.0014)$	0.008
Women					0.001
Healthy subset	$0.633(0.0028)$	$0.619(0.0028)$	$0.614(0.0028)$	$0.634(0.0028)$	0.013
Poor health subset	$0.588(0.0031)$	$0.586(0.0031)$	$0.600(0.0031)$	$0.601(0.0031)$	0.006
Whole population	$0.656(0.0013)$	$0.649(0.0013)$	$0.653(0.0013)$	$0.662(0.0013)$	

(B) Using the reduced biomarker panel

	Death from chronic disease				
	Chronological age	Stepwise regression age	Klemera Doubal age	Klemera Doubal age and Chronological age	Improvement of Klemera Doubal over Chronological age
Men					
Healthy subset	$0.724(0.0081)$	$0.690(0.0081)$	$0.679(0.0081)$	$0.726(0.0081)$	0.004
Poor health subset	$0.658(0.0043)$	$0.687(0.0043)$	$0.682(0.0043)$	$0.688(0.0043)$	0.044
Whole population	$0.725(0.0028)$	$0.727(0.0028)$	$0.720(0.0028)$	$0.742(0.0028)$	0.030
Women					0.002
Healthy subset	$0.688(0.0092)$	$0.665(0.0092)$	$0.666(0.0092)$	$0.691(0.0092)$	0.023
Poor health subset	$0.617(0.0056)$	$0.624(0.0056)$	$0.633(0.0056)$	$0.636(0.0056)$	0.012
Whole population	$0.699(0.0034)$	$0.691(0.0034)$	$0.696(0.0034)$	$0.712(0.0034)$	

	CHD event or death				
	Chronological age	Stepwise regression age	Klemera Doubal age	Klemera Doubal age and Chronological age	Improvement of Klemera Doubal over Chronological age
Men					
Healthy subset	$0.683(0.0066)$	$0.669(0.0066)$	$0.664(0.0066)$	$0.690(0.0066)$	0.007
Poor health subset	$0.628(0.0046)$	$0.626(0.0046)$	$0.625(0.0046)$	$0.639(0.0046)$	0.011
Whole population	$0.699(0.0026)$	$0.686(0.0026)$	$0.683(0.0026)$	$0.707(0.0026)$	0.008
Women					0.025
Healthy subset	$0.720(0.0111)$	$0.735(0.0111)$	$0.735(0.0111)$	$0.745(0.0111)$	0.035
Poor health subset	$0.671(0.0063)$	$0.695(0.0063)$	$0.700(0.0063)$	$0.706(0.0063)$	0.025
Whole population	$0.739(0.0038)$	$0.753(0.0038)$	$0.754(0.0038)$	$0.764(0.0038)$	

	Age-related hospital admissions				
	Chronological age	Stepwise regression age	Klemera Doubal age	Klemera Doubal age and Chronological age	Improvement of Klemera Doubal over Chronological age
Men					
Healthy subset	$0.660(0.0029)$	$0.635(0.0029)$	$0.628(0.0029)$	$0.661(0.0029)$	0.001
Poor health subset	$0.604(0.0030)$	$0.597(0.0030)$	$0.595(0.0030)$	$0.609(0.0030)$	0.007
Whole population	$0.677(0.0014)$	$0.660(0.0014)$	$0.655(0.0014)$	$0.680(0.0014)$	0.007
Women					0.000
Healthy subset	$0.633(0.0028)$	$0.615(0.0028)$	$0.614(0.0028)$	$0.634(0.0028)$	0.012
Poor health subset	$0.588(0.0031)$	$0.592(0.0031)$	$0.598(0.0031)$	$0.600(0.0031)$	0.006
Whole population	$0.656(0.0013)$	$0.649(0.0013)$	$0.652(0.0013)$	$0.662(0.0013)$	

Table 14: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist for this study

Section/Topic	Item*		Checklist Item	Page
Title and abstract				
Title	1	D; V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	p1
Abstract	2	D; V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	p2-3
Introduction				
Background and objectives	3 a	D; V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	S1 p7-9
	3b	D; V	Specify the objectives, including whether the study describes the development or validation of the model or both.	p4-7
Methods				
Source of data	4a	D; V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	S1 p3
	4b	D; V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	S1 p3
Participants	5a	D; V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	S1 p3
	5b	D;V	Describe eligibility criteria for participants.	S1 p3-4
	5 c	D;V	Give details of treatments received, if relevant.	NA
Outcome	6a	D; V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	S1 p5-6
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	NA
Predictors	7a	D; V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	S1 p5,7
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	NA
Sample size	8	D;V	Explain how the study size was arrived at.	S1 p3
Missing data	9	D; V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	S1 p3,5
Statistical analysis methods	10a	D	Describe how predictors were handled in the analyses.	S1 p7-9
	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	S1 p7-9
	10c	V	For validation, describe how the predictions were calculated.	S1 p8-9
	10d	D; V	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	S1 p7-9
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	S1 p9
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	S1 p9
Development vs. validation	12	V	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	NA
Results				
Participants	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	S1 p3-5,29
	13b	D; V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	S1 p3-6
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	NA
Model development	14a	D	Specify the number of participants and outcome events in each analysis.	S1 p18
	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	NA
Model specification	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	S1 p20
	15b	D	Explain how to use the prediction model.	p19-20
Model performance	16	D; V	Report performance measures (with Cls) for the prediction model.	$\begin{gathered} \hline \text { S1 p24- } \\ 26,39 \end{gathered}$
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	NA
Discussion				
Limitations	18	D; V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	p20
Interpretation	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	NA
	19b	D; V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	p16-21
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	p20-21

Other information				
Supplementary information	21	D;V	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	S1 p3
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	p21-22

This study is a development and internal validation study under TRIPOD guidelines ${ }^{36}$
*Items relevant to model development are denoted by D , items relating to model validation are denoted by V

Figure 1: Flowchart of selection of study population, before population stratification

Figure 2: Flowchart of the classification process for UK Biobank medication names

[^1]Figure 3: Biomarker-age trends for the 72 candidate biomarkers, healthy men vs healthy women

\[

\]

Pulse rate

1200010:1:

: : : : ロ: ロ:: : :

	1	1	1	1
40				
45	50 Baseline age 60 65 70 Mean reticulocyte volume			

- Healthy men
- Healthy women

Figure 4: Assessment of the need for stratification of healthy never vs healthy ex smokers: biomarker-age trends for the lung function biomarkers and systolic blood pressure, by sex

Key:

- Healthy never smokers
- Healthy ex smokers

Figure 5: Characterisation of 14 of the first 51 biomarker principal components

PC17 (eigenvalue: 1.19)

PC25 (eigenvalue: 0.93)

PC30 (eigenvalue: 0.84)

PC33 (eigenvalue: 0.78)

PC34 (eigenvalue: 0.76)

PC35 (eigenvalue: 0.73)

$$
\begin{aligned}
& \text { Red blood celk distrod cuition count } \\
& \text { Midth } \\
& \text { Mean corpuscular haemoglobin concente woutrotion }
\end{aligned}
$$

Rotated factor loading

PC47 (eigenvalue: 0.46)
PC48 (eigenvalue: 0.45)

Figure 6: 10-fold cross validation prediction errors (with standard error bars) for each subset of principal components (to a maximum of 55) using (A) Klemera Doubal age (top) and (B) stepwise regression age (bottom), for healthy men (left) and women (right)

(A) Klemera Doubal age

(B) Stepwise regression age

These plots display prediction errors (mean square errors of biological ages; y-axes) and their standard error bars, for each biological age constructed from the specified number of principal components (x-axes). They were used to search for an elbow point, where beyond the elbow point there were diminishing changes in prediction error by increasing number of principal components.

Figure 7: Means and standard deviations of (A) Klemera Doubal (top) and (B) stepwise regression (bottom) biological ages by 2.5-year chronological age groups, for healthy men (left) and healthy women (right)

(A) Klemera Doubal ages

(B) Stepwise regression ages

These plots indicate how well biological ages (y-axes) are calibrated to chronological age (x-axes), and the variability (indicated by ± 1 standard deviation bars) of individuals' biological ages in each 2.5-year chronological age group.

Figure 8: Kaplan-Meier plots for (1) mortality from chronic disease, (2) age-related hospital admissions and (3) CHD event or death, of the differences between chronological age and (A) Klemera Doubal or (B) stepwise regression biological ages, for healthy men (left) and healthy women (right)
(1) Mortality from chronic disease
(A) Klemera Doubal ages

(B) Stepwise regression ages

Predicted risk group Kaplan-Meier curve and 95\% confidence interval (shaded area):

$$
\begin{array}{ll}
\perp \mathrm{BA}-\mathrm{CA}<-5 \text { years } & \mathrm{BA}-\mathrm{CA}>5 \text { years } \\
\text { (Biologically younger) } & \\
\text { (Biologically older) }
\end{array}
$$

BA: biological age, CA: chronological age
Time is measured in years from baseline assessment
(2) CHD event or death

(A) Klemera Doubal ages

(B) Stepwise regression ages

Predicted risk group Kaplan-Meier curve and 95\% confidence interval (shaded area):

$$
\begin{array}{ll}
\mathrm{BA}-\mathrm{CA}<-5 \text { years } & \mathrm{BA}-\mathrm{CA}>5 \text { years } \\
\text { (Biologically younger) } & \text { (Biologically older) }
\end{array}
$$

BA: biological age, CA: chronological age
Time is measured in years from baseline assessment

(3) Age-related hospital admissions

Predicted risk group Kaplan-Meier curve and 95\% confidence interval (shaded area):
$+B A-C A<-5$ years
(Biologically younger)
$+|B A-C A|<5$ years
$\perp B A-C A>5$ years
(Biologically older)

BA: biological age, CA: chronological age
Time is measured in years from baseline assessment

References

1. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med 2015; 12(3): e1001779.
2. UK Biobank. UK Biobank. http://www.ukbiobank.ac.uk/ (accessed 1 August 2019).
3. NHS Business Services Authority. BNF Code Information. 2017. https://www.nhsbsa.nhs.uk/
(accessed 6 December 2017).
4. Brilleman SL, Salisbury C. Comparing measures of multimorbidity to predict outcomes in primary care: a cross sectional study. Fam Pract 2013; 30(2): 172-8.
5. Tran J, Norton R, Conrad N, et al. Patterns and temporal trends of comorbidity among adult patients with incident cardiovascular disease in the UK between 2000 and 2014: A population-based cohort study. PLoS Med 2018; 15(3): e1002513.
6. Kang YG, Suh E, Lee JW, Kim DW, Cho KH, Bae CY. Biological age as a health index for mortality and major age-related disease incidence in Koreans: National Health Insurance Service - Health screening 11year follow-up study. Clin Interv Aging 2018; 13: 429-36.
7. Gupta RP, Strachan DP. Ventilatory function as a predictor of mortality in lifelong non-smokers: evidence from large British cohort studies. BMJ Open 2017; 7(7): e015381.
8. Nakamura E, Miyao K. A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol A Biol Sci Med Sci 2007; 62(10): 1096-105.
9. Jia L, Zhang W, Chen X. Common methods of biological age estimation. Clin Interv Aging 2017; 12: 759-72.
10. UK Biobank. Companion Document to Accompany Serum Biomarker Data. 2019.
http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf (accessed 22 July 2019).
11. Yoo J, Kim Y, Cho ER, Jee SH. Biological age as a useful index to predict seventeen-year survival and mortality in Koreans. BMC Geriatr 2017; 17(1): 7.
12. Mamoshina P, Kochetov K, Putin E, et al. Population specific biomarkers of human aging: a big data study using South Korean, Canadian and Eastern European patient populations. J Gerontol A Biol Sci Med Sci 2018.
13. Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci 2013; 68(6): 667-74.
14. Levine ME, Crimmins EM. A comparison of methods for assessing mortality risk. Am J Hum Biol 2014; 26(6): 768-76.
15. Jee H, Park J. Selection of an optimal set of biomarkers and comparative analyses of biological age estimation models in Korean females. Arch Gerontol Geriatr 2017; 70: 84-91.
16. Mitnitski A, Howlett SE, Rockwood K. Heterogeneity of Human Aging and Its Assessment. J Gerontol A Biol Sci Med Sci 2017; 72(7): 877-84.
17. Gilbert T, Neuburger J, Kraindler J, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. Lancet 2018; 391(10132): 1775-82.
18. Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493737 UK Biobank participants. The Lancet Public Health 2018; 3(7): e323-e32.
19. Vetrano DL, Palmer K, Marengoni A, et al. Frailty and Multimorbidity: A Systematic Review and Meta-analysis. J Gerontol A Biol Sci Med Sci 2019; 74(5): 659-66.
20. Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP. Frailty: implications for clinical practice and public health. Lancet 2019; 394(10206): 1365-75.
21. Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet 2019; 51(3): 481-93.
22. Zhang W, Jia L, Cai G, et al. Model Construction for Biological Age Based on a Cross-Sectional Study of a Healthy Chinese Han population. Journal of Nutrition, Health \& Aging 2017; 21(10): 1233-9.
23. Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A 2015; 112(30): E4104-10.
24. Nakamura E, Miyao K, Ozeki T. Assessment of biological age by principal component analysis. Mech Ageing Dev 1988; 46(1-3): 1-18.
25. Cho IH, Park KS, Lim CJ. An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI). Mech Ageing Dev 2010; 131(2): 69-78.
26. Zhong X, Lu Y, Gao Q, et al. Estimating Biological Age in the Singapore Longitudinal Aging Study. The Journals of Gerontology: Series A, Biological sciences and medical sciences 2019.
27. Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mech Ageing Dev 2006; 127(3): 240-8.
28. Cohen AA, Milot E, Li Q, et al. Detection of a novel, integrative aging process suggests complex physiological integration. PLoS One 2015; 10(3): e0116489.
29. Ganna A, Ingelsson E. 5 year mortality predictors in 498,103 UK Biobank participants: a prospective population-based study. Lancet 2015; 386(9993): 533-40.
30. Liu Z, Kuo P-L, Horvath S, Crimmins E, Ferrucci L, Levine M. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS Med 2018; 15(12): e1002718.
31. Genizi A. Decomposition of R^{2} in multiple regression with correlated regressors. Statistica Sinica 1993; 3(2): 407-20.
32. Groemping U. Relative Importance for Linear Regression in R: The Package relaimpo. J Stat Soft 2006; 17(1): 27.
33. Grömping U. Variable importance in regression models. Wiley Interdisciplinary Reviews: Computational Statistics 2015; 7(2): 137-52.
34. Therneau T. A Package for Survival Analysis in S. Version 2.38. 2015. https://CRAN.Rproject.org/package=survival. (Accessed 5 November 2019)
35. Nagelkerke NJD. A note on a general definition of the coefficient of determination. Biometrika 1991; 78(3): 691-2.
36. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD StatementThe TRIPOD Statement. Ann Intern Med 2015; 162(1): 55-63.

[^0]: CA: chronological age, BA: biological age

[^1]: \wedge Classification in this step was reviewed by a clinician

