S1 Appendix - Biological age in UK Biobank: biomarker composition and prediction of mortality, coronary heart disease and hospital admissions (Short title: Biological age biomarker composition and outcome prediction)

Table of Contents

1. UK Biobank and study population	
UK Biobank	
Study population	
Assessment dates and follow-up	
Stratification by health status	3
2. Exposure and outcome preparation	5
<i>Biomarker data cleaning</i>	
ě –	
Phenotyping health outcomes	
3. Statistical analyses	7
A. Biomarker characteristics	7
B. Principal components of biomarkers	7
C. Estimation of biological ages and mortality score	
D. Cross-validation of biological age estimation	
E. Biomarker importance in biological ages	
F. Prediction of adverse health outcomes	
G. Explanatory power of biological ages	
H. Calibration of biological ages	
4. Supplementary results	
Results of the biological age estimation and the prediction of health outcomes	
Cross-validation of biological age estimation	
Calibration of biological ages	
Predictive power of biological ages	11
Supplementary tables and figures	12
Table 1: List of in-scope British National Formulary (BNF) Chapters and Sections related to chronic di	
Table 2: Summary statistics for chronic disease medication count at baseline in the UK Biobank	
Table 3: Repeated measures Pearson correlation coefficients adjusted for baseline age for each of the 7	
candidate biomarkers, by sex	13
Table 4: Missingness and Pearson correlations of best measure and supplemented lung function baselin	
repeated measurements	
Table 5: List of the 72 UK Biobank biomarkers selected for analysis, with percentage of missing data fo	
each biomarker in the whole population	
Table 6: Constituent ICD-10 codes for the age-related hospital admissions definition, ranked by hazard	
of baseline age in the UK Biobank	
<i>P-values of hazard ratios for 10 years of age for each ICD-10 group were significant at the 10⁻³ level</i>	
Table 7: Number of events for each outcome in each prior health subpopulation, by sex	
Table 8: Pearson correlation coefficients of biomarkers with chronological age ranked by magnitude, ir	
Healthy subpopulation, by sex	
Table 9: Model coefficients for (A) Klemera Doubal and (B) stepwise regression biological ages, in the	
Healthy subpopulation, by sex	
Table 10: Importances of the 51 biomarker principal components in the Klemera Doubal ages for health	
men (left) and women (right)	
Table 11: Relative contribution (as a percentage of the total contribution of biological and chronological	
ages) of Klemera Doubal biological age and chronological age in explaining each health outcome, in (A (B) where (A) and (B) where (A) and (B) where (A) and (B) and (B) are the set of the set o	
main analysis (top) and (B) when using the reduced biomarker panel (bottom), for healthy men and wor	
Table 12: Harrell's C-indices (with standard errors) for mortality score and biological ages, for each	23
	24
outcome and subpopulation in the main analysis (unadjusted)	
Table 13: Harrell's C-indices (with standard errors) for chronological age and biological ages, for each outcome and subpopulation in the (A) main analysis (top) and when (P) using the reduced biomarkov p	
outcome and subpopulation in the (A) main analysis (top) and when (B) using the reduced biomarker particular that the state of the stat	
(bottom) (adjusted for environmental factors and health behaviours)	23

Table 14: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnos	is
(TRIPOD) checklist for this study	27
Figure 1: Flowchart of selection of study population, before population stratification	29
Figure 2: Flowchart of the classification process for UK Biobank medication names	29
Figure 3: Biomarker-age trends for the 72 candidate biomarkers, healthy men vs healthy women	30
Figure 4: Assessment of the need for stratification of healthy never vs healthy ex smokers: biomarker-age	
trends for the lung function biomarkers and systolic blood pressure, by sex	33
Figure 5: Characterisation of 14 of the first 51 biomarker principal components	34
Figure 6: 10-fold cross validation prediction errors (with standard error bars) for each subset of principal	
components (to a maximum of 55) using (A) Klemera Doubal age (top) and (B) stepwise regression age	
(bottom), for healthy men (left) and women (right)	39
Figure 7: Means and standard deviations of (A) Klemera Doubal (top) and (B) stepwise regression (bottom	ı)
biological ages by 2.5-year chronological age groups, for healthy men (left) and healthy women (right)	40
Figure 8: Kaplan-Meier plots for (1) mortality from chronic disease, (2) age-related hospital admissions and	nd
(3) CHD event or death, of the differences between chronological age and (A) Klemera Doubal or (B)	
stepwise regression biological ages, for healthy men (left) and healthy women (right)	41

1. UK Biobank and study population

UK Biobank

The UK Biobank is a large and richly phenotyped prospective study with over 500,000 participants in middle age when recruited in 2006–2010.¹ The resource has collected and continues to collect extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, and longitudinal follow-up for a wide range of health-related outcomes.¹ Details on the recruitment, biomarker measurement and data linkage procedures are available from the UK Biobank website.² UK Biobank is an open access data resource for bona fide researchers who wish to use it to conduct health-related research for the benefit of the public, and access procedures are also detailed on the UK Biobank website.²

Study population

This study included all participants in the UK Biobank data extract in April 2019. Information on sociodemographic characteristics, self-reported health behaviours, health ratings and medication were collected from touchscreen questionnaires. Linkage to Hospital Episode Statistics (HES) provided prior and prospective information on secondary care outcomes. Linkage to the Office for National Statistics (ONS) death registry provided date and cause of death. Over 100 biomarkers were measured via physical measurement devices, blood assays and urine assays. Sex, age (rounded down by month) and the date of assessment were available for all participants. Index of Multiple Deprivation 2010 score was grouped into quintiles within the UK Biobank population in each country.

Of the 502,536 participants in the UK Biobank, participants were excluded if they had no date of assessment or did not attend the verbal interview, had none of the blood count or plasma measurements, were younger than 40 or older than 70 years at baseline, or were missing their Index of Multiple Deprivation score. After these exclusions, there were 480,019 participants in the study population (Figure 1).

Assessment dates and follow-up

Participants attended baseline assessment in 2006-2010 and a subset of $\approx 20,000$ participants attended a repeat assessment in 2012-2013.¹ Participants were followed up for a median of 8.7 years to the death record censoring date of 31 January 2018 for English and Welsh participants or 30 November 2016 for Scottish participants. HES records were available for a median follow up period of 8.0 years, until 31 March 2017 for English participants, 31 October 2016 for Scottish participants, or 29 February 2016 for Welsh participants.

Stratification by health status

A composite measure of prior health for stratification into 4 subpopulations was derived from self-reported characteristics at baseline interview and HES records, according to these definitions:

1. Healthy: No self-reported chronic disease medications, good self-reported health, steady/brisk walk speed,

0-2 HES episodes prior to recruitment, never/ex smoker, no prior disease or hip/wrist fracture

2. <u>Some medications</u>: 1-2 self-reported chronic disease medications, 0-2 HES episodes, no prior disease or hip/wrist fracture

- 3. Slightly unhealthy: Participants who do not fall into other categories
- 4. Poor health: Prior disease or hip/wrist fracture

Diseases in scope are age-related chronic diseases recorded in HES: Cardiac arrhythmia, chronic kidney disease, diabetes mellitus, heart failure, ischaemic heart disease, peripheral arterial disease, arthritis, rheumatoid arthritis, osteoporosis, gout, dementia, stroke/transient ischaemic attack, chronic obstructive pulmonary disease, connective tissue disease, liver disease and malignant cancers.

Self-reported medications were classified as chronic disease-related using a data-driven and text-mining approach applied to the 1366 medication names reported in the UK Biobank at April 2017. These medication names were mapped to British National Formulary (BNF) Chapters, Sections and Paragraphs that were defined by BNF as at December 2017.³ A clinician reviewed the classification of the 167 BNF Sections matched to the reported medication names. This medication classification process is summarised in Figure 2 and the 50 BNF Sections that were classified as chronic disease-related in this study are listed in Table 1.

A simple count of chronic disease medication types was done for each participant in the study, based on self-reported medication use at baseline. Participant responses were classified by a trained nurse during the verbal interview stage of the baseline assessment. This method of counting medication types was based on a procedure for counting BNF Paragraphs of reported medications, which was found to be predictive of mortality.⁴ No medication use was reported by 51.6% of participants, while the remaining 48.4% reported 787 chronic disease-related medications in the relevant BNF Sections identified earlier (Tables 1 and 2). The mean number of medications per participant for those reporting medication use was 1.72.

The phenotyping of non-cancer prior disease was based on a list of diseases and their respective ICD-10 codes derived from linked primary and secondary care records in England.⁵ Prior cancer was defined as malignant cancers (excluding in-situ neoplasms, benign neoplasms and non-melanoma skin cancers).⁶ Age-related chronic diseases were selected for use in this study were based on the following criteria: (1) commonly classified as a chronic rather than acute disease, (2) clear increasing trend in incidence with chronological age , and (3) not defined solely by levels of any biomarker in the candidate biomarker list.

Prior hip and wrist fractures were identified in participants using the ICD-10 codes S72 and S62 respectively.

2. Exposure and outcome preparation

Biomarker data cleaning

As at April 2019, 110 physical and biochemical biomarkers were available in UK Biobank. Biomarkers were excluded from the panel for this study if they were measured in <70% of the whole population, if they were not measured on a continuous scale, or if they measured the same biological trait (e.g. standardly-measured but not impedance device-measured weight was selected), leaving 74 biomarkers (Table 3).

'Best' measures for the included lung function biomarkers, forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC), were defined by UK Biobank² and available for 72% of men and 70% of women in this study. Up to 3 raw readings for each biomarker were also available. Both lung function biomarkers had the highest proportions of data missing within the biomarker panel, if only best measures were considered (Table 4). The raw readings provided two types of lower-quality measurements: (1) Remainder with 'accept' flags, created by taking the non-missing means of up to 3 readings flagged as 'accept' (available in an additional 4% of men and 4% of women); and subsequently (2) all remaining readings, created by taking the non-missing means of up to 3 available readings (measured in an additional 14% of men and 18% of women). Best measure, type (1) and type (2) baseline measurements were moderately or highly correlated with the type (1) repeated measures (Pearson correlation coefficients >0.585). Therefore, it is likely that these lower quality readings are more highly correlated with usual values than any general imputed value would be. The best measures were thus supplemented with these two types of measurements, reducing the missingness in the hybrid FEV1 and FVC measures to 10% and 8% for men and women respectively. (The use of additional readings has also been advocated by others.⁷)

FEV1 and FVC, along with hand grip strength, were each divided by standing height.⁸ This was done to ensure that measurements for these derived biomarkers were not strongly determined by body size.

A further 2 biomarkers, oestradiol and nucleic red blood cell count, were excluded due to poor reproducibility, leaving 72 biomarkers (Table 5). In this study, biomarker measurement quality threshold was set at an intraindividual Pearson correlation coefficient adjusted by baseline age of more than 0.1, in the repeat assessment subset of 9447 men and 9888 women (Table 3). These 72 biomarkers were categorised by body system group, based partially on the biomarker categorisation used by a review of biological age studies.⁹

Biomarker measurements were cleaned by this procedure:

- 1. Urinary and blood plasma biomarkers, flagged as below or above the assay reportable range¹⁰ were replaced with the respective limit of the range.
- 2. All biomarkers, values were standardised by subtracting their overall mean and dividing by their standard deviation. Body size biomarkers exhibited sex differences, therefore they were standardised separately within each sex.
- 3. Standardised values outside ± 4 were treated as outliers, set to missing, and were subsequently imputed in step 4.
- 4. Imputation was carried out by replacing all missing values with the overall medians within 5-year baseline age, similar to a procedure based on imputing overall means.¹¹ This was preferred to assigning a non-central biomarker value through multiple imputation¹² and complete case analysis.¹³⁻¹⁶ Relative to chronological age, multiple imputation would skew individuals' biological ages in the direction that is indicated by the available biomarkers for each individual, and the degree of statistical inference applied to the missing biomarkers within the imputation procedure and the resulting uncertainty in biological age estimation are not communicated through their biological age. The use of complete cases based on biomarker measurements introduces bias into the estimation of biological ages that is difficult to quantify.

Phenotyping health outcomes

Three adverse health outcomes were investigated in this study: (1) Mortality due to chronic disease; (2) incidence of a coronary heart disease-related event; and (3) first admission to hospital for an age-related reason. These outcomes were phenotyped from death registry and HES records, based on code lists and procedures published by previous studies.^{11,13,14,17}

1. Mortality due to chronic disease:

Mortality is the most objective and most accurately recorded outcome available in UK Biobank. Based on ICD-10 coded causes of death, accidental deaths^{13,14} and non-chronic disease deaths¹¹ were excluded, following previous studies' procedures. These deaths would not be much related to ageing processes and their high prevalence at younger ages might mask ageing-related mortality effects. The exclusions were specified by ICD-10 Chapter: certain infectious and parasitic diseases (A00-B99), pregnancy, childbirth and the puerperium (O00-O99), congenital malformations, deformations and chromosomal abnormalities (Q00-Q99), injury, poisoning and certain other consequences of external causes (S00-T98) and external causes of morbidity and mortality (V01-Y98).

2. Incidence of a coronary heart disease-related event:

The incidence of a coronary heart disease (CHD) is commonly used as an adverse endpoint in clinical trials and observational studies of disease epidemiology. In this study, a CHD event was defined as a HES diagnosis or a death registry-recorded death, where the diagnosis or cause of death was coded as any of the following ICD-10 codes: I21, I251, I255, I259, I214, I219, I249.

3. First admission to hospital for an age-related reason:

Hospital admissions for age-related reasons may be symptoms of biological frailty and were identified through a frailty risk score for secondary care records.¹⁷ Frailty is a strong predictor for multimorbidity and mortality in the UK Biobank¹⁸ and adverse health outcomes in many other populations.¹⁹ It precedes mortality, and may be a general indicator of ageing earlier in life. However, not all components of frailty are age-related or are recorded in clinical care. Since the operational definitions of frailty (clinician-assessed frailty, variations of the frailty phenotype and frailty indices) differ, and further research is required to assess the ability of health record-based frailty indices to detect biological frailty,²⁰ for the avoidance of doubt the term 'hospital admissions' was used instead.

The age-related hospital admisssion outcome in this study was constructed from the candidate ICD-10 codelist in the study of hospital frailty risk score for HES inpatients:¹⁷

- a. Incident cases in the UK Biobank at April 2017 were identified for each of 75 candidate frailty subtypes, defined as standalone 3-digit ICD10 codes in HES diagnosis records with >500 incident cases, otherwise grouped ICD-10 codes within the same ICD-10 block (Table 6).
- b. Hazard ratios per 10 years of baseline chronological age were then estimated for each candidate subtype as the outcome, with Cox models adjusted for smoking status, alcohol intake frequency and Townsend deprivation quintile.
- c. Subtypes were included in the definition if this hazard ratio exceeded the threshold of 1.2.

The number of events for each outcome was summarised by prior health subpopulation and sex in Table 7.

3. Statistical analyses

A. Biomarker characteristics

Biomarker-age trends were assessed for linearity and for homogeneity between sexes and across prior health subpopulations. To estimate biomarker-age trends, linear regression was used to obtain least-square means and standard errors of standardised biomarker values by 2.5-year chronological age groups, separately by sex, adjusted for Index of Multiple Deprivation 2010 quintile, smoking status, alcohol consumption band and assessment centre. Trends for each biomarker were displayed on a common standardised scale for comparability (with original units included as a second scale), and visually assessed for linearity across age groups (Figure 3). These trends were assessed for linearity, as subsequent statistical methods assume linearity of biomarker-biomarker-age relationships.

To assess whether further stratification of the healthy subpopulation by smoker status was required, a sensitivity analysis of biomarker-age trends for healthy never vs ex smokers was carried out. All biomarkers were assessed, with a focus on lung function as it appeared to have the strongest linear relationship with chronological age, and is adversely affected by smoking.²¹ Figure 4 displays the trends for lung function biomarkers, which display the largest disparities by smoking status, and systolic blood pressure. The trends for the two lung function biomarkers were linear for each smoking status with a slight convergence at older ages, and the trends for the remaining biomarkers appeared to be similar regardless of smoker status. Therefore further stratification was not essential.

Pearson correlations, which assume linearity, were calculated for each biomarker and chronological age. The correlation coefficients for the healthy subpopulation are ranked by magnitude in S1 Table 8. Many previous studies used biomarker-age correlations to pre-select biomarkers for inclusion into biological ages.^{13-15,22,23} Pre-selection was not carried out in this study for two reasons: (1) to avoid selecting biomarkers that are potentially highly correlated with each other (due to their high correlation with chronological age), and (2) to allow methods for estimating biological age to complete their own selection process.

B. Principal components of biomarkers

Principal Component Analysis (PCA) was used to summarise the biomarkers (dimensions) into linearly independent principal components, which are linear combinations or composites of the original biomarkers.²⁴ PCA was run on the full set of biomarkers after imputing missing values for the whole population. The resulting biomarker principal components were ranked by their eigenvalues, representing the degree of variation in biomarker values that each principal component describes. Ranking principal components by their eigenvalues facilitated the selection of a smaller number of biomarker principal components that still represented the majority of variation biomarker values. The selection of biomarker principal components involved cross validation of the models for estimating biological age (S1 Appendix 3D).

To aid clinical interpretation, varimax rotation²⁵ (which seeks to increase the contribution of biomarkers strongly loaded onto a principal component and decreases the contribution of those less strongly loaded) was applied after PCA. The rotated principal components were individually characterised based on the relative contributions of their constituent biomarkers, measured via rotated factor loadings (S1 Figure 5). The rotated factor loadings and the eigenvalues of the principal components were similar when run on the healthy subpopulation and the whole population (data not shown), thus only the results for the whole population were used in all subsequent analyses, for consistency in interpretation.

C. Estimation of biological ages and mortality score

Previous studies^{13,25,26} that compared several estimation methods applied to clinical biomarkers reported that Klemera Doubal biological ages²⁷ appeared to have the highest predictive power for health outcomes, followed by multiple linear regression (MLR), then PCA. A recent review of biological age estimation methods⁹ compared statistical properties and limitations of these three methods, and it listed more limitations in the MLR and PCA methods than in the Klemera Doubal method (KDM).

This study investigated the three main estimation methods, which were all based on linear regressions of chronological age with candidate biomarkers. Modifications were made, including the integration of the PCA method (described in the previous section) into both the MLR^{25,28} and KDM,²⁵ to improve the statistical properties of these methods.

Method 1: Klemera Doubal Method (KDM)²⁷ –

This method assumes that its constituent biomarkers are uncorrelated and is based on two principles: (1) biological age summarises the differences between individuals' actual biomarker levels x_j , where j = 1, ..., m for *m* candidate biomarkers, and characteristic biomarker levels for their chronological age; (2) biomarkers with stronger linear relationships to chronological age contribute more to biological age.²⁷ The KDM biological age was estimated by linearly regressing each biomarker x_j against chronological age, then taking the weighted sum of all the regression results, with the following form:

Biological age
$$\propto \sum_{j=1}^{m} {\binom{k_j}{s_j^2}} (x_j - q_j),$$

where q_j = intercept, k_j = coefficient and s_j =standard error from the jth chronological age-biomarker regression

Klemera and Doubal proposed a second version of biological age, which some studies found controversial,^{16,25} as it included chronological age as a biomarker. In order to assess biological ages both in isolation and jointly with chronological age, only the version of KDM age without chronological age as a biomarker was used.

Since this method does not involve biomarker selection and assumes that its constituent biomarkers are uncorrelated, this method was applied with and without prior PCA on candidate biomarkers.²⁵ The former approach reduces interdependence between its constituents, while the latter approach was common practice.^{9,13,16,25,26}

Method 2: Stepwise MLR -

This method represents biological age by the linear combination of biomarkers that explains the most variation in chronological age. This biological age is thus not statistically independent of chronological age, limiting its scope for prediction of health outcomes.

The standard MLR method, where biological age is the predicted value of chronological age regressed on all candidate biomarkers,^{9,13} was extended with a stepwise procedure that iteratively selected biomarkers that most explained chronological age, in the presence of other selected biomarkers. Stepwise regression was chosen over other variable selection or shrinkage methods, as multiple testing could be accounted for easily, through the specification of modified p-value thresholds. The Bonferroni-corrected p-value at the 0.05 level (0.05/number of variables) was used as the stepwise selection criteria, to adjust for multiple testing and reduce correlation between selected biomarkers. This method was also applied with and without prior PCA on candidate biomarkers, for comparison with results from Method 1.

Benchmark for comparison: Estimation of mortality score -

Previous studies derived a mortality-based score²⁹ and biological age³⁰ for cause-specific mortality and comorbidity prediction, using penalised Cox proportional hazards models for variable selection. For consistency with the estimation of biological ages in this study, a benchmark mortality score was derived using the same biomarker panel, with a Bonferroni-corrected stepwise Cox model. The predictive power of the mortality score and the biological ages for CHD events and age-related hospital admissions were compared using C-indices from unadjusted Cox models stratified by sex and subpopulation (S1 Appendix 3F).

Biological ages were estimated separately by sex, due to differences in biomarker-age trends by sex (S1 Figure 3). Additionally, mortality from chronic disease, prior and incident CHD and age-related hospital admissions were different between sexes (S1 Table 7).

D. Cross-validation of biological age estimation

Cross-validation was carried out to check the stability of estimated biological ages and to identify the optimal number of biomarker principal components to include in the models. The initial criterion for the latter was the search for an elbow point in a plot of prediction errors for biological age estimation models run with an increasing number of principal components, ordered by decreasing eigenvalue, where beyond the elbow point there were diminishing changes in prediction error by increasing the number of principal components included in the model. If no clear elbow points were apparent, a second criterion of an eigenvalue threshold of >0.33 ($\frac{1}{3}$ of the average variation in biomarker measurements described by a single biomarker in the UK Biobank) was

imposed, to avoid the inclusion of principal components that captured little biomarker variation in the population.

E. Biomarker importance in biological ages

The relative importance of each biomarker was calculated as the proportion of variance in the biological ages explained by each constituent biomarker in the presence of the other constituent biomarkers (R^2). For both biological ages, it was derived using the Fabbris/Genizi/Johnson method³¹ implemented in the R package 'relaimpo',³² as recommended by a review of relative importance estimation methods in situations where there are large numbers of variables.³³

F. Prediction of adverse health outcomes

For each of the 3 outcomes defined in S1 Appendix 2, Cox proportional hazards models were run on the same subpopulations as those used in the biological age estimation, but excluding participants with prior events. They were stratified by sex and adjusted for Index of Multiple Deprivation 2010 quintile, smoking status, alcohol consumption, assessment centre, and age combinations (all variables were categorical except ages). Age combinations used were: (1) chronological age, (2) biological age, and (3) both chronological and biological age. Combination (3) was not used for stepwise regression ages, as stepwise regression ages cannot be combined with chronological age in a prediction model due to double counting.

Predictive power was assessed using Harrell's C-index, a measure for survival models equivalent to area under the receiver operating characteristic curve, both separately for the healthy and poor health subpopulations and for the whole population. The C-index and its standard errors were calculated using Kendall's tau.³⁴

G. Explanatory power of biological ages

To investigate the relationship between biological and chronological ages without reference to a specific health outcome, the proportion of variation in chronological age explained by each biological age was estimated in terms of R^2 from univariate linear regressions. The proportion of the chronological age effect on mortality, CHD and hospital admission risk that was explained by each biological age was also estimated. The proportion of the biological age effect for each outcome explained by chronological age was also estimated in a similar way. This was done by comparing the log partial likelihoods of pairs of nested models, an extension of likelihood ratio tests:

Proportion of CA explained by BA =
$$\frac{(l_{CA} - l_{base}) - (l_{BA+CA} - l_{CA})}{(l_{CA} - l_{base})}$$
Proportion of BA explained by CA =
$$\frac{(l_{BA} - l_{base}) - (l_{BA+CA} - l_{BA})}{(l_{BA} - l_{base})}$$

where l_m : log-likelihood of model *m*, *base*: adjusted model without chronological or biological age, *CA*: adjusted model with chronological age only, *BA*: adjusted model with biological age only and *BA*+*CA*: adjusted model with both biological and chronological age

Ratios were taken of these proportions to derive the relative contributions of biological age and chronological age to the combined age effect in predicting these health outcomes. The log-likelihood proportions above are equivalent to comparisons of the Nagelkerke pseudo- R^{2} ³⁵ of the same pairs of models, which are approximations of R^{2} for Cox models. Since biomarker importances are expressed in terms of R^{2} , biomarker importances and the relative explanatory power of chronological and biological ages can be jointly assessed in terms of R^{2} or its approximations.

H. Assessing calibration of biological ages

To assess the calibration of biological ages with chronological age, the means and standard deviations for stepwise regression and KDM ages were plotted against chronological age, for each 2.5-year chronological age band in the age range of 40-70. A perfectly calibrated biological age would have mean biological age equal to mean chronological age in each age band. For biological ages that are not well calibrated, further transformations in order to recalibrate stepwise regression age to chronological age have been proposed⁶ but are only necessary at implementation stage.

To assess the risk calibration of biological ages, participants were stratified into 3 predicted risk groups based on the difference between their biological age (BA) and chronological age (CA):¹⁶ (1) BA - CA < -5 years (biologically younger), (2) |BA - CA| < 5 years, and (3) BA - CA > 5 years (biologically older). For each biological age, sex and health outcome, Kaplan-Meier survival curves stratified by predicted risk group were plotted and assessed for overlap.

All statistical analyses were run in R version 3.3.3.

4. Supplementary results

Results of the biological age estimation and the prediction of health outcomes

The model coefficients for the KDM and stepwise regression biological ages for the health subpopulation are tabulated in S1 Table 9. Further results for the KDM and stepwise regression biological ages and their prediction of health outcomes are listed in S1 Tables 10–13. The reporting of these results and other aspects of this study are summarised in the Guidelines for Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)³⁶ checklist for this study (S1 Table 14).

Cross-validation of biological age estimation

For the KDM and stepwise regression ages, prediction errors (mean square errors) were plotted against the numbers of principal components included in the models (S1 Figure 6). There were no clear elbow points in any subpopulation for either biological age. Hence the optimal number of principal components was determined to be 51, based on the eigenvalue threshold of >0.33 per principal component.

Calibration of biological ages

For a biological age to be communicated in terms of an age, it had to be calibrated to be similar to chronological age on average in the population. In each sex in the healthy subpopulation, the KDM age was well-calibrated with chronological age, but the stepwise regression age was too high at younger chronological ages and too low at older chronological ages (S1 Figure 7). Further rescaling to calibrate stepwise regression age to chronological age is not relevant for assessing its constituents and its relative predictive power, but is important for implementation in a clinical setting.

In order to communicate additional health information to chronological age, the difference between individuals' biological and chronological age had to be risk calibrated to demonstrate worse prognosis (if biological age was greater than chronological age) and vice versa, for each health outcome. For healthy men, there were slight differences in mortality, CHD and hospital admissions after 3–8 years from baseline, between the predicted risk groups based on the KDM age. These differences were smaller or undetectable for women. For the stepwise regression biological age, the predicted risk groups clearly differentiated risk of each health outcome after 4 years from baseline, but in the reverse direction (S1 Figure 8).

Predictive power of biological ages

In unadjusted models for predicting health outcomes, both KDM and stepwise regression biological ages were more predictive of CHD events and hospital admissions than the mortality score in the healthy subpopulation (respective improvements in C-indices for CHD: 0.135 and 0.144 in men, 0.109 and 0.103 in women; for hospital admissions: 0.111 and 0.112 in men, 0.068 and 0.073 in women; S1 Table 12). The mortality score performed only slightly better than chance (equivalent to a C-index of 0.5). Both biological ages were slightly worse at predicting mortality due to chronic disease compared to the mortality score in the same subpopulation (respective improvements in C-indices: -0.015 and -0.012 in men, -0.013 and -0.018 in women). Based on C-indices from the adjusted prediction models (S1 Table 13), both KDM and stepwise regression biological ages were similarly predictive of CHD and less predictive of mortality and hospital admissions than chronological age in the healthy subpopulation, but had similar predictive power to the biological ages in the whole population.

The combination of chronological age and KDM age was the most predictive of mortality (S1 Table 13). Supplementing chronological age with KDM age did not increase C-indices in the healthy subpopulation (0.007 in men, 0.002 in women) but increased C-indices in the whole population (0.031 in men, 0.014 in women). Predictive power was significantly higher for mortality than for hospital admissions in the healthy subpopulation (C-indices: 0.731 [Standard error (SE): 0.0081] vs 0.662 [0.0029] in men, 0.690 [0.0092] vs 0.634 [0.0028] in women), and for men compared to women. Predictive power was significantly higher for mortality than for CHD in healthy men (0.731 [0.0081] vs 0.689 [0.0066]) but not women (0.690 [0.0092] vs 0.743 [0.0111]). Stepwise regression age cannot be combined with chronological age in a prediction model, because it was directly constructed by regressing its constituent biomarkers against chronological age.

Supplementary tables and figures

Table 1: List of in-scope British National Formulary (BNF) Chapters and Sections related to chronic disease

BNF Chapter	BNF Section
Cardiovascular System	Anti-Arrhythmic Drugs
	Anticoagulants And Protamine
	Antifibrinolytic Drugs & Haemostatics
	Antiplatelet Drugs
	Beta-Adrenoceptor Blocking Drugs
	Diuretics
	Hypertension and Heart Failure
	Lipid-Regulating Drugs
	Local Sclerosants
	Nit,Calc Block & Other Antianginal Drugs
	Positive Inotropic Drugs
	Sympathomimetics
Central Nervous System	Analgesics
	Antidepressant Drugs
	Antiepileptic Drugs
	CNS Stimulants and drugs used for ADHD
	Dementia
	Drugs Used In Nausea And Vertigo
	Drugs Used In Park'ism/Related Disorders
	Drugs Used In Psychoses & Rel.Disorders
	Drugs Used In Substance Dependence
	Hypnotics And Anxiolytics
	Obesity
Endocrine System	Corticosteroids (Endocrine)
	Drugs Affecting Bone Metabolism
	Drugs Used In Diabetes
	Hypothalamic&Pituitary Hormones&Antioest
	Other Endocrine Drugs
	Thyroid And Antithyroid Drugs
Eye	Treatment Of Glaucoma
Gastro-Intestinal System	Antisecretory Drugs+Mucosal Protectants
	Antispasmod.&Other Drgs Alt.Gut Motility
	Chronic Bowel Disorders
	Drugs Affecting Intestinal Secretions
	Dyspep&Gastro-Oesophageal Reflux Disease
Infections	Antiviral Drugs
Malignant Disease & Immunosuppression	Cytotoxic Drugs
Q	Drugs Affecting The Immune Response
	Sex Hormones & Antag In Malig Disease
Musculoskeletal & Joint Diseases	Drugs Used In Neuromuscular Disorders
	Drugs Used In Rheumatic Diseases & Gout
	Soft-Tissue Disorders & Topical Pain Rel
Nutrition And Blood	Anaemias + Other Blood Disorders
	Metabolic Disorders
Respiratory System	Bronchodilators
	Corticosteroids (Respiratory)
	Cromoglycate, Rel, Leukotriene Antagonists
	Mucolytics
	Mucolytics Resp Stimulants & Pulmonary Surfactants

Table 2: Summary statistics for chronic disease medication count at baseline in the UK Biobank

Chronic disease medication count	medication count Persons (%)		Women (%)
None	51.6	52.5	50.8
1-2	39.7	37.7	41.4
>2	8.7	9.8	7.8

Table 3: Repeated measures Pearson correlation coefficients adjusted for baseline age for each of the 74	
candidate biomarkers, by sex	

Biomarker name	Men	Women
Diastolic blood pressure	0.603	0.664
Systolic blood pressure	0.609	0.656
Pulse rate	0.652	0.636
Apolipoprotein A	0.753	0.716
Apolipoprotein B	0.628	0.686
Lipoprotein (a)	0.973	0.968
High density lipoprotein cholesterol	0.815	0.807
Low density lipoprotein cholesterol	0.614	0.664
Triglycerides	0.570	0.620
Mean platelet volume	0.836	0.838
Platelet count	0.725	0.746
Platelet crit	0.701	0.707
Platelet distribution width	0.649	0.640
Log C-Reactive Protein	0.543	0.656
Blood glucose	0.447	0.364
HbA1c	0.771	0.720
Insulin-like growth factor 1	0.770	0.744
Sex hormone-binding globulin	0.832	0.745
Testosterone	0.641	Not considered
Oestradiol*	Not considered	0.094
Haemoglobin concentration	0.635	0.594
HLS reticulocyte count	0.551	0.588
Immature reticulocyte fraction	0.430	0.405
Mean corpuscular volume	0.748	0.716
Mean reticulocyte volume	0.546	0.506
Mean spherical cell volume	0.706	0.691
Total red blood cell count	0.732	0.718
Red blood cell distribution width	0.566	0.480
Reticulocyte count	0.326	0.311
Mean corpuscular haemoglobin concentration	0.251	0.198
Nucleic red blood cell count*	0.013	0.003
Albumin	0.453	0.465
Alanine aminotransferase	0.482	0.326
Aspartate aminotransferase	0.445	0.329
Direct bilirubin	0.699	0.708
Total bilirubin	0.764	0.740
Gamma Glutamyltransferase	0.682	0.615
Heel bone density	0.689	0.713
Body mass index	0.931	0.925
Sitting height	0.796	0.799
Standing height	0.986	0.984
Hip circumference	0.805	0.839
Waist circumference	0.823	0.829
Waist-hip ratio	0.664	0.653
Weight	0.944	0.930
Body fat-free mass	0.945	0.914
Body fat mass	0.902	0.906
Body fat percentage	0.859	0.869
Metabolic rate	0.949	0.928
Hand grip strength/height	0.615	0.515
Alkaline Phosphatase	0.743	0.689
Calcium	0.371	0.406
Rheumatoid factor	0.755	0.856
Vitamin D	0.558	0.547
Reaction time test	0.518	0.494
Pairs matching test	0.233	0.206
Urinary microalbumin	0.400	0.357
Urinary sodium	0.325	0.296
Urinary creatinine	0.267	0.288
Urinary potassium	0.232	0.251
Urea	0.573	0.542
Creatinine Cystatin C	0.653	0.671
Cystatin C Phosphate	0.759	0.802
Phosphate Total protein	0.409	0.393
Urate	0.494 0.719	0.492 0.780
	0.715	0.760

Forced expiratory volume in 1s/height	0.503	0.502
Forced vital capacity/height	0.655	0.649
Eosinophil count	0.619	0.603
Lymphocyte count	0.859	0.646
Monocyte count	0.420	0.341
Neutrophil count	0.539	0.528
Basophil count	0.143	0.112
Total white blood cell count	0.787	0.593

* Biomarkers with correlation coefficients of <0.1

Both baseline and repeated measurements for these biomarkers were available for 2657-9444 men and 2213-9873 women

The 36 excluded biomarkers are: pulse pressure; total cholesterol; peak expiratory flow (spirometry); heel bone density measurements represented as: Broadband ultrasound attenuation, quantitative ultrasound index, speed of sound through heel; impedance device-measured weight; total mass, fat mass, fat free mass and fat percentage for: trunk, left leg, right leg, left arm, right arm; Metabolic Equivalent Task (MET) minutes per week for moderate activity; MET minutes per week for vigorous activity; mean corpuscular haemoglobin; haematocrit percentage; visual acuity; hearing test; numeric memory test; fluid intelligence test; and prospective memory test.

Table 4: Missingness and Pearson correlations of best measure and supplemented lung function baseline and repeated measurements

Men:	Forced expiratory volume in 1s (FEV1)			(FEV1)	Forced vital capacity (FVC)			
	Participants at baseline		Participants with 'accept' flagged repeat assessment		Participants a baseline	at	Participants v 'accept' flagg assessment	
	Number	% total	Correlation	Number	Number	% total	Correlation	Number
Best measure	158,140	72%	0.722	5888	158,140	72%	0.729	5888
Remainder with 'accept' flags	9,113	4%	0.753	140	9,113	4%	0.828	140
All remaining readings	31,125	14%	0.654	664	31,125	14%	0.664	664
All readings	198,378	90%	0.720	6692	198,378	90%	0.729	6692
No data	20,870	10%			20,870	10%		

Women:	Forced expiratory volume in 1s (FEV1)			Fc	orced vital	capacity (FVC)		
	Participant baseline	Participants at 'accept' flagged		Participants with 'accept' flagged repeat assessment		at	Participants v 'accept' flagg assessment	
	Number	% total	Correlation	Number	Number	% total	Correlation	Number
Best measure	183,323	70%	0.723	5978	183,323	70%	0.743	5978
Remainder with 'accept' flags	9,710	4%	0.762	127	9,710	4%	0.778	127
All remaining readings	46,423	18%	0.585	747	46,423	18%	0.614	747
All readings	239,456	92%	0.709	6852	239,456	92%	0.730	6852
No data	21,315	8%			21,315	8%		

Best measure lung function measurements were defined by UK Biobank.² Two types of lung function measurements were used to supplement best measure lung function: (1) remainder with 'accept' flags and (2) all remaining readings.

No.	Body system group	Biomarker description	% missing
1	Cardiovascular:	Diastolic blood pressure	0.1
2		Systolic blood pressure	0.1
3		Pulse rate	0.1
4		Apolipoprotein A	12.9
5		Apolipoprotein B	5
6		Lipoprotein (a)	7.6
7		High density lipoprotein cholesterol	12.7
8		Low density lipoprotein cholesterol	4.9
9		Triglycerides	4.7
10	Clotting:	Mean platelet volume	2.9
11		Platelet count	2.9
12		Platelet crit	2.9
13		Platelet distribution width	2.9
14	Endocrine, metabolic	Log C-Reactive Protein	4.8
15	and immune:	Blood glucose	12.8
16		HbA1c	5.3
17		Insulin-like growth factor 1	5.2
18		Sex hormone-binding globulin	13.4
19		Testosterone	5.6
20	Liver:	Albumin	12.7
21		Alanine aminotransferase	4.7
22		Aspartate aminotransferase	5.1
23		Direct bilirubin	7.5
24		Total bilirubin	5.1
25		Gamma Glutamyltransferase	4.7
26	Musculoskeletal:	Heel bone density	1.8
27		Body mass index*	0.4
28		Sitting height*	0.3
29		Standing height*	0.3
30		Hip circumference*	0.2
31		Waist circumference*	0.2
32		Waist-hip ratio*	0.2
33		Weight*	0.3
34		Body fat-free mass*	1.8
35		Body fat mass*	1.9
36		Body fat percentage*	1.8
37		Metabolic rate*	1.8
38		Hand grip strength/height*	0.4
39		Alkaline Phosphatase	4.7
40		Calcium	12.7
41		Rheumatoid factor	4.7
42		Vitamin D	8.5
43	Nervous:	Reaction time test	1.1
44		Pairs matching test	3.5
45	Red blood cells:	Haemoglobin concentration	2.9
46		HLS reticulocyte count	4.6
47		Immature reticulocyte fraction	4.6
48		Mean corpuscular volume	2.9
49		Mean reticulocyte volume	4.6
50		Mean spherical cell volume	4.6
51		Total red blood cell count	2.9
52		Red blood cell distribution width	2.9
53		Reticulocyte count	4.6
54		Mean corpuscular haemoglobin concentration	2.9
55	Renal:	Urinary microalbumin	2.9
56		Urinary sodium	2.9
57		Urinary creatinine	2.7
58		Urinary potassium	2.9
58 59		Urea	4.8
			4.8
60 61		Creatinine	
61 62		Cystatin C	4.7
62		Phosphate Total protoin	12.8
63		Total protein	12.8
64	+ <u>-</u>	Urate	4.8
65	Respiratory:	Forced expiratory volume in 1s/height*	8.9
66		Forced vital capacity/height*	8.9

Table 5: List of the 72 UK Biobank biomarkers selected for analysis, with percentage of missing data for each biomarker in the whole population

67	White blood cells:	Eosinophil count	3.1
68		Lymphocyte count	3.1
69		Monocyte count	3.1
70		Neutrophil count	3.1
71		Basophil count	3.1
72		Total white blood cell count	2.9

 $\ensuremath{^*}$ Values were standardised separately for men and women, due to large sex differences

All biochemical biomarkers were measured via blood assays unless labelled as 'urinary'

No	ICD10 group	ICD-10 codes	Incident cases in UK Biobank	Hazard ratio for 10 years of age
1	Dementia	F00 F01 F03 G30	214	5.70
2	Parkinsons	G20	576	3.16
3	Chronic renal failure	N18	873	3.14
4	Osteoporosis without pathological fracture	M81	1454	2.66
5	Other disorders of fluid, electrolyte and acid-base balance	E87	554	2.29
6	Retention of urine	R33	1274	2.28
7	Transient cerebral ischaemic attacks and related syndromes	G45	508	2.27
8	Delirium	F05	54	2.27
9	Polyarthrosis	M15	913	2.19
10	Respiratory disease not infection	J69 J96	412	2.17
11	Cerebrovascular	167 169	794	2.11
12	Osteoporosis	M80	546	2.07
13	Cerebral Infarction	163	574	2.07
14	Other hearing loss	H91	864	2.00
15	Other abnormal findings of blood chemistry	R79	1816	1.90
16	Renal failure	N17 N19	956	1.90
17	Neurodegenerative disease	G31	114	1.90
18	Problems related to social environment	Z60	839	1.86
19	Skin ulcer	L89 L97	308	1.83
20	Kidney urinary disorders	N28	876	1.82
21	Other arthrosis	M19	4403	1.80
22	Spinal stenosis (secondary code only)	M48	1038	1.73
23	Digestive disease	K26	1567	1.65
24	Pneumonia, organism unspecified	J18	1256	1.60
25	Blindness or low vision	H54	381	1.60
26	Dorsophathy	M41	379	1.59
27	Fall on same level from slipping, tripping and stumbling	W01	1597	1.59
28	Unspecified fall	W19	926	1.57
29	Hypotension	195	717	1.51
30	Syncope and collapse	R55	1541	1.49
31	Metabolic disorder	E83 E86	1135	1.47
32	Cognition emotion behaviour symptoms	R40 R41 R44 R45 R47	1577	1.47
33	Symptoms and signs concerning food and fluid intake	R63	1405	1.45
34	Other external	Y84 Y95 Z22 Z50 Z73 Z74 Z75 Z93 Z99	3954	1.44
35	Hemiplegia	G81	381	1.43
36	Fall	W06 W18	850	1.39
37	Urinary system symptoms	R32	918	1.37
38	Unspecified acute lower respiratory infection	J22	998	1.36
39	Nervous and musculoskeletal symptoms	R26 R29	1000	1.35
40	Other bacterial agents as the cause of diseases classified to other chapters (secondary code)	B96	1051	1.33
41	Fall on and from stairs and steps	W10	639	1.32
42	Unspecified haematuria	R31	3447	1.31
43	Abnormalities of heart beat	R00	1939	1.30
44	Personal history of other diseases and conditions	Z87	6111	1.26
45	Skin infection	L08	627	1.26
46	Infection	A04 A41 B95	3444	1.25
47	Other anaemias	D64	2237	1.25
48	Dysphagia	R13	1554	1.25
49	Pancreatic disorder	E16	230	1.23
50	Abnormal results of function studies	R94	755	1.22
51	Other functional intestinal disorders	К59	1955	1.22
52	Gangrene	R02	137	1.22

Table 6: Constituent ICD-10 codes for the age-related hospital admissions definition, ranked by hazard ratio of baseline age in the UK Biobank

This codelist excludes cancer or any form of neoplasms

P-values of hazard ratios for 10 years of age for each ICD-10 group were significant at the 10^{-3} level

Table 7: Number of events for each outcome in each prior health subpopulation, by

	Persons	Men	Women
Healthy subpopulation			
Participants at baseline	141,254	65,869	75,385
Deaths from chronic disease	2,394	1,357	1,037
Prior CHD event	0	0	0
Incident CHD event	2,693	1,987	706
Prior age-related hospital admissions	6,206	2,953	3,253
Incident age-related hospital admissions	21,627	10,317	11,310
Poor health subpopulation			
Participants at baseline	82,835	42,277	40,558
Deaths from chronic disease	7,552	4,729	2,823
Prior CHD event	12,986	9,942	3,044
Incident CHD event	6,296	4,090	2,206
Prior age-related hospital admissions	35,947	18,327	17,620
Incident age-related hospital admissions	19,254	10,023	9,231
Whole population			
Participants at baseline	480,019	219,248	260,771
Deaths from chronic disease	18,799	11,362	7,437
Prior CHD event	12,986	9,942	3,044
Incident CHD event	18,757	12,676	6,081
Prior age-related hospital admissions	74,811	35,401	39,410
Incident age-related hospital admissions	93,716	43,700	50,016

Table 8: Pearson correlation coefficients of biomarkers with chronological age ranked by magnitude, in the Healthy subpopulation, by sex

Ranking	Biomarker	Pearson correlation coefficient	Ranking	Biomarker	Pearson correlatior coefficient
1	Forced expiratory volume in 1s/height	-0.377	1	Forced expiratory volume in 1s/height	-0.441
2	Cystatin C	0.317	2	Cystatin C	0.404
3	Sex hormone-binding globulin	0.315	3	Forced vital capacity/height	-0.381
4	Forced vital capacity/height	-0.313	4	Systolic blood pressure	0.373
5	Systolic blood pressure	0.295	5	Low density lipoprotein	0.359
6	Albumin	-0.283	6	HbA1c	0.342
7	Reaction time test	-0.281	7	Apolipoprotein B	0.336
8	Insulin-like growth factor 1	-0.259	8	Alkaline Phosphatase	0.328
9	Hand grip strength/height	-0.238	9	Hand grip strength/height	-0.318
10	Metabolic rate	-0.224	10	Urea	0.317
11	Body fat-free mass	-0.214	11	Insulin-like growth factor 1	-0.309
12	HbA1c	0.208	12	Reaction time test	-0.308
13	Mean corpuscular volume	0.186	13	Triglycerides	0.235
14	Sitting height	-0.177	14	Heel bone density	-0.233
15	Pairs matching test	-0.169	15	Sitting height	-0.217
16	Waist-hip ratio	0.167	16	Aspartate aminotransferase	0.200
17	Mean spherical cell volume	0.166	17	Urate	0.192
18	Urea	0.159	18	Haemoglobin concentration	0.185
19	Body fat percentage	0.151	19	Metabolic rate	-0.184
20	Standing height	-0.148	20	Blood glucose	0.182
21	Total protein	-0.146	21	Calcium	0.179
22	Red blood cell distribution width	0.145	22	Body fat-free mass	-0.178
23	Alanine aminotransferase	-0.140	23	Standing height	-0.169
24	Apolipoprotein A	0.139	24	Pairs matching test	-0.159
25	Mean reticulocyte volume	0.135	25	Waist-hip ratio	0.153
26	Monocyte count	0.126	26	Body fat percentage	0.151
27	Log C-Reactive Protein	0.125	27	Apolipoprotein A	0.148
28	Total red blood cell count	-0.125	28	Phosphate	0.144
29	Blood glucose	0.122	29	Log C-Reactive Protein	0.138
30	Calcium	-0.120	30	Alanine aminotransferase	0.127
31	Urinary sodium	-0.119	31	Total red blood cell count	0.127
32	Vitamin D	0.118	32	Direct bilirubin	-0.127
33	Urinary microalbumin	0.118	33	Gamma Glutamyltransferase	0.126
34	Platelet crit	-0.102	34	Urinary sodium	-0.125
35	Neutrophil count	0.102	35	Urinary microalbumin	0.118

36	High density lipoprotein	0.102	36	Waist circumference	0.108
37	Weight	-0.093	37	Diastolic blood pressure	0.107
38	Total white blood cell count	0.086	38	Testosterone	-0.103
39	Apolipoprotein B	0.085	39	High density lipoprotein	0.102
40	Urinary creatinine	-0.085	40	Urinary creatinine	-0.092
41	Diastolic blood pressure	0.083	41	Neutrophil count	-0.089
42	Waist circumference	0.082	42	Vitamin D	0.087
43	Low density lipoprotein	0.079	43	Platelet crit	-0.084
44	Platelet count	-0.073	44	Body fat mass	0.062
45	Reticulocyte count	-0.065	45	Mean platelet volume	-0.060
46	Body fat mass	0.057	46	Mean spherical cell volume	0.060
47	Phosphate	-0.054	47	Mean corpuscular volume	0.058
48	Alkaline Phosphatase	0.054	48	Sex hormone-binding globulin	-0.056
49	Basophil count	0.047	49	Lymphocyte count	0.055
50	HLS reticulocyte count	-0.047	50	Body mass index	0.054
51	Heel bone density	-0.042	51	Total white blood cell count	-0.054
52	Mean corpuscular haemoglobin	-0.041	52	Albumin	-0.053
	concentration				
53	Aspartate aminotransferase	-0.040	53	Pulse rate	0.052
54	Pulse rate	0.039	54	Lipoprotein (a)	0.049
55	Hip circumference	-0.038	55	Total protein	-0.043
56	Rheumatoid factor	0.036	56	Platelet count	-0.043
57	Direct bilirubin	-0.035	57	Total bilirubin	-0.040
58	Platelet distribution width	0.034	58	Mean reticulocyte volume	0.039
59	Mean platelet volume	-0.034	59	Basophil count	-0.039
60	Haemoglobin concentration	-0.032	60	Creatinine	0.038
61	Creatinine	0.029	61	Platelet distribution width	0.035
62	Lymphocyte count	-0.026	62	Rheumatoid factor	0.031
63	Total bilirubin	-0.018	63	Weight	-0.023
64	Body mass index	-0.018	64	Monocyte count	0.021
65	Urinary potassium	0.013	65	Hip circumference	0.021
66	Testosterone	-0.010	66	Urinary potassium	0.013
67	Immature reticulocyte fraction	0.007	67	Eosinophil count	-0.012
68	Urate	0.006	68	Immature reticulocyte fraction	-0.009
69	Triglycerides	0.006	69	Reticulocyte count	0.007
70	Gamma Glutamyltransferase	-0.003	70	Red blood cell distribution width	0.007
71	Lipoprotein (a)	-0.002	71	Mean corpuscular haemoglobin	0.006
				concentration	
72	Eosinophil count	0.001	72	HLS reticulocyte count	-0.002

Table 9: Model coefficients for (A) Klemera Doubal (KDM) and (B) stepwise regression biological ages, in the Healthy subpopulation, by sex

(A) Klemera Doubal (KDM) ages

			lealthy me	n	Healthy women			
Biomarke	Biomarker principal component number and description		$\mathbf{q}_{\mathbf{j}}$ $\mathbf{k}_{\mathbf{j}}$ $\mathbf{s}_{\mathbf{j}}$			$\mathbf{q}_{\mathbf{j}}$ $\mathbf{k}_{\mathbf{j}}$ $\mathbf{s}_{\mathbf{j}}$		
PC1	General adiposity	55.224	0.004	11.865	56.673	-1.035	10.628	
PC2	Total haemoglobin volume	56.276	1.035	11.814	58.763	-3.455	10.344	
PC3	Height	56.007	3.638	10.626	56.429	3.049	10.038	
PC4	Albumin	56.235	5.479	10.676	55.896	-0.074	10.896	
PC5	Neutrophil count	55.806	-1.896	11.633	56.036	-0.543	10.875	
PC6	Immature red blood cell volume	55.353	-2.078	11.565	55.880	0.151	10.894	
PC7	LDL and ApoB	55.047	-0.746	11.824	55.293	-4.247	9.166	
PC8	Reticulocyte count	55.226	0.055	11.865	56.530	-1.526	10.739	
PC9	Urinary potassium and creatinine	55.248	-0.101	11.864	55.950	0.251	10.893	
PC10	Blood pressure	54.700	-2.940	11.374	56.959	-3.768	9.829	
PC11	HDL and ApoA	55.715	0.980	11.811	55.797	0.126	10.895	
PC12	Aminotransferases	55.303	0.325	11.860	57.384	-4.235	10.206	
PC13	Bilirubin	55.759	1.016	11.774	55.432	1.558	10.719	
PC14	Platelet count	55.067	-0.343	11.858	55.798	0.319	10.888	
PC15	Red blood cell haemoglobin concentration	55.442	-1.244	11.798	55.889	-0.048	10.896	
PC16	Testosterone	54.896	-0.385	11.862	56.129	-0.345	10.896	
PC17	Lung function/height	57.442	-5.247	9.508	57.285	-4.819	8.697	
PC18	Blood glucose	55.467	2.362	11.694	56.254	3.519	10.508	
PC19	Platelet cell volume	55.216	-0.181	11.864	55.929	-0.722	10.869	
PC20	LP(a)	55.233	0.081	11.865	55.886	0.906	10.858	
PC21	Pairs matching test	55.541	-3.107	11.464	56.001	-2.285	10.670	
PC22	Rheumatoid factor	55.234	0.597	11.851	55.898	0.455	10.887	
PC23	Bone density	55.485	-0.830	11.836	55.451	-2.792	10.587	
PC24	Vitamin D	55.180	0.897	11.832	55.882	0.242	10.893	
PC25	IGF-1	56.478	5.561	10.692	56.011	3.770	10.242	
PC26	Urinary microalbumin	55.491	3.197	11.636	56.257	2.829	10.767	
PC27	Basophil count	55.356	1.306	11.809	55.893	-0.153	10.895	
PC28	Central adiposity	56.393	-4.109	11.274	56.605	-3.698	10.338	
PC29	Eosinophil count	55.214	0.838	11.836	56.041	0.829	10.358	
PC30	Alkaline phosphatase	55.614	-2.022	11.738	56.426	-5.813	9.215	
PC31	Pulse rate	55.576	-1.408	11.783	55.926	-1.888	10.763	
PC32	Red blood cell width	55.694	-3.190	11.552	55.904	-0.203	10.894	
PC32 PC33	Reaction time test	56.417	-5.222	10.788	55.963	-4.210	10.894	
PC33	Sex hormone-binding globulin	58.143	7.049	11.096	56.932	-2.355	10.109	
PC34 PC35	Hand grip strength/height	56.156	5.354	10.716	56.783	5.022	9.845	
PC35 PC36	Phosphate	54.881	1.169	11.806	55.469	-2.109	9.845 10.724	
PC30 PC37	Lymphocyte count	55.340	-0.547	11.855	55.902	-2.055	10.724	
PC37	Triglycerides	55.226	0.008	11.855	57.879	6.395	9.838	
PC38 PC39	Urinary sodium							
PC39 PC40	,	55.393 54.981	0.634	11.847 11.544	55.754 56.276	0.477 1.301	10.888 10.841	
	Monocyte count Gamma glutamyltransferase		2.936					
PC41 PC42	5 1	55.145	0.680	11.847	57.554	4.670	10.325	
	Urea	54.943	2.177	11.690	56.967	4.759	9.985	
PC43	HbA1c	56.395	4.928	11.232	57.306	6.937	9.638	
PC44	Platelet distribution width	55.217	0.071	11.865	55.964	0.583	10.882	
PC45	Log C-reactive protein	56.097	4.298	11.264	56.620	4.315	10.172	
PC46	Reticulocyte fraction	55.424	1.087	11.821	56.028	0.913	10.862	
PC47	Cystatin C	55.163	-6.091	10.883	58.861	-7.437	9.137	
PC48	Muscle mass	55.919	-6.416	10.722	56.018	-4.356	10.485	
PC49	Calcium	55.023	-3.212	11.488	55.788	3.217	10.429	
PC50	Total protein	55.330	2.042	11.695	55.903	-1.683	10.770	
PC51	Urate	54.829	0.870	11.845	59.192	6.360	9.978	

 q_j = intercept, k_j = coefficient and s_j = square root of residual variance for the jth biomarker component

(B) Stepwise regression ages

		Healthy men	Healthy women
Biomai	ker principal component number and description	Coeffi	icients
(Interce	ept)	59.015	55.942
PC1	General adiposity	0.189	0.146
PC2	Total haemoglobin volume	0.491	-0.264
PC3	Height	-0.288	-
PC4	Albumin	1.017	0.410
PC5	Neutrophil count	-0.423	0.225
PC6	Immature red blood cell volume	-0.398	-0.312
PC7	LDL and ApoB	-0.455	-0.720
PC8	Reticulocyte count	0.156	0.087
PC9	Urinary potassium and creatinine	0.332	0.203
PC10	Blood pressure	-1.255	-0.988
PC11	HDL and ApoA	0.570	0.513
PC12	Aminotransferases	0.397	-0.182
PC13	Bilirubin	-0.134	-
PC14	Platelet count	-0.520	-0.314
PC15	Red blood cell haemoglobin concentration	-	0.084
PC16	Testosterone	0.687	1.556
PC17	Lung function/height	-1.103	-1.030
PC18	Blood glucose	0.401	0.486
PC19	Platelet cell volume	-0.432	-0.247
PC20	LP(a)	-0.432	-0.247
PC20	Pairs matching test	-0.520	-0.379
PC21	Rheumatoid factor	0.154	0.066
PC22 PC23	Bone density	-0.128	-0.825
PC23 PC24	Vitamin D	0.682	
PC24 PC25	IGF-1	0.822	0.512 1.218
PC26	Urinary microalbumin Basophil count	0.312	0.617
PC27 PC28	•	-	-0.111
	Central adiposity	-0.860	-0.176
PC29	Eosinophil count	-0.186	-0.250
PC30	Alkaline phosphatase	-0.106	-0.790
PC31	Pulse rate	0.119	-
PC32	Red blood cell width	-0.422	-
PC33	Reaction time test	-1.042	-0.918
PC34	Sex hormone-binding globulin	2.661	-0.075
PC35	Hand grip strength/height	0.430	0.679
PC36	Phosphate	0.180	-0.283
PC37	Lymphocyte count	0.395	-
PC38	Triglycerides	0.416	0.441
PC39	Urinary sodium	1.056	1.067
PC40	Monocyte count	0.472	0.187
PC41	Gamma glutamyltransferase	-0.113	-0.265
PC42	Urea	0.801	1.110
PC43	HbA1c	0.918	1.382
PC44	Platelet distribution width	0.328	0.116
PC45	Log C-reactive protein	-0.199	-0.289
PC46	Reticulocyte fraction	-0.187	-0.212
PC47	Cystatin C	-1.774	-1.483
PC48	Muscle mass	-1.182	-0.519
PC49	Calcium	0.139	0.660
PC50	Total protein	0.757	1.189
PC51	Urate	-0.398	-0.490

Table 10: Importances of the 51 biomarker principal components in the Klemera Doubal (KDM) ages for healthy men (left) and women (right)

Healthy men

neur	Althy men Healthy women					
Rank	Biomarker principal component	Proportion of total R ² (%)	Ran	k Biomarker principal component	Proportion of total R ² (%)	
1	Lung function/height	12.4	1	Lung function/height	10.3	
2	Reaction time test	6.9	2	Cystatin C	8.0	
3	IGF-1	6.7	3	LDL and ApoB	7.0	
4	Cystatin C	6.7	4	Alkaline phosphatase	6.6	
5	Hand grip strength/height	6.4	5	HbA1c	5.9	
6	Albumin	6.3	6	Hand grip strength/height	5.6	
7	Sex hormone-binding globulin	6.0	7	Urea	4.9	
8	Muscle mass	5.9	8	Blood pressure	4.9	
9	Height	5.6	9	Reaction time test	4.6	
10	Blood pressure	3.5	10	IGF-1	4.0	
11	HbA1c	3.5	11	Height	3.8	
12	Central adiposity	2.9	12	Triglycerides	3.7	
13	Pairs matching test	2.6	13	Urate	3.2	
14	Log C-reactive protein	2.5	14	Aminotransferases	2.8	
15	Calcium	2.1	15	Log C-reactive protein	2.2	
16	Immature red blood cell volume	2.0	16	Bone density	2.2	
17	Red blood cell width	1.8	17	Total haemoglobin volume	2.1	
18	Total protein	1.7	18	Gamma glutamyltransferase	1.9	
19	Monocyte count	1.5	19	Blood glucose	1.9	
20	Urea	1.5	20	Central adiposity	1.8	
21	Urinary microalbumin	1.4	21	Muscle mass	1.8	
22	Blood glucose	1.2	22	Calcium	1.7	
23	Neutrophil count	1.1	23	Pairs matching test	1.3	
24	HDL and ApoA	0.8	24	Phosphate	1.0	
25	Vitamin D	0.6	25	Sex hormone-binding globulin	0.8	
26	Alkaline phosphatase	0.6	26	General adiposity	0.8	
27	Total haemoglobin volume	0.6	27	Urinary microalbumin	0.7	
28	General adiposity	0.5	28	Bilirubin	0.7	
29	Urinary sodium	0.5	29	Lymphocyte count	0.5	
30	LDL and ApoB	0.4	30	Pulse rate	0.4	
31	Phosphate	0.4	31	Reticulocyte count	0.4	
32	Pulse rate	0.4	32	Total protein	0.3	
33	Bilirubin	0.4	33	HDL and ApoA	0.3	
34	Red blood cell haemoglobin concentration	0.3	34	Urinary sodium	0.3	
35	Testosterone	0.3	35	Albumin	0.2	
36	Platelet count	0.3	36	LP(a)	0.2	
37	Basophil count	0.3	37	Testosterone	0.2	
38	Urate	0.2	38	Vitamin D	0.2	
39	Reticulocyte count	0.2	39	Monocyte count	0.1	
40	Bone density	0.2	40	Platelet cell volume	0.1	
41	Aminotransferases	0.2	40	Platelet distribution width	0.1	
42	Triglycerides	0.2	42	Urinary potassium and creatinine	0.1	
43	Reticulocyte fraction	0.2	43	Neutrophil count	0.1	
44	Gamma glutamyltransferase	0.1	44	Reticulocyte fraction	0.1	
45	Rheumatoid factor	0.1	45	Platelet count	0.1	
46	Eosinophil count	0.1	46	Eosinophil count	0.1	
47	Lymphocyte count	0.1	47	Red blood cell width	0.1	
48	Urinary potassium and creatinine	0.1	48	Rheumatoid factor	0.1	
49	Platelet distribution width	0.0	49	Immature red blood cell volume	0.1	
50	Platelet cell volume	0.0	50	Basophil count	0.0	
51	LP(a)	0.0	51	Red blood cell haemoglobin concentration		

Table 11: Relative contribution (as a percentage of the total contribution of biological and chronological ages) of Klemera Doubal (KDM) biological age and chronological age in explaining each health outcome, in (A) the main analysis (top) and (B) when using the reduced biomarker panel (bottom), for healthy men and women

(A) Main analysis

	Death from chronic disease			CHE) event or de	eath	Age-related hospital admissions		
	CA	CA and	BA	CA	CA and	BA	CA	CA and	BA
	alone	BA	alone	alone	BA	alone	alone	BA	alone
Men									
Healthy subset	28.3	63.5	8.2	29.5	63.8	6.7	34.7	61.4	4.0
Poor health subset	1.9	39.4	58.8	12.6	53.5	33.9	17.7	59.5	22.8
Whole population	8.3	56.6	35.1	17.3	62.2	20.4	20.8	64.5	14.7
Women									
Healthy subset	39.0	58.3	2.7	10.0	61.9	28.1	39.6	58.7	1.7
Poor health subset	4.7	44.2	51.1	7.1	44.2	48.7	7.2	54.2	38.6
Whole population	18.9	60.8	20.4	11.0	57.0	32.0	18.8	66.1	15.1

(B) Using the reduced biomarker panel

	Death from chronic disease			СН) event or d	eath	Age-related hospital admissions		
	CA	CA and	BA	CA	CA and	BA	CA	CA and	BA
	alone	BA	alone	alone	BA	alone	alone	BA	alone
Men									
Healthy subset	47.0	49.9	3.1	37.1	55.7	7.2	50.0	48.2	1.9
Poor health subset	9.9	43.0	47.1	30.4	49.4	20.2	38.0	50.1	11.9
Whole population	23.0	55.2	21.9	34.4	54.3	11.3	42.5	51.7	5.8
Women									
Healthy subset	35.0	60.3	4.7	9.3	61.1	29.7	39.8	58.2	2.0
Poor health subset	9.3	48.0	42.7	9.9	45.6	44.5	11.0	54.7	34.4
Whole population	20.4	61.3	18.3	12.8	58.4	28.8	21.2	65.1	13.6

CA: chronological age, BA: biological age

Table 12: Harrell's C-indices (with standard errors) for mortality score and biological ages, for each outcome and subpopulation in the main analysis (unadjusted)

	Death from chronic disease								
	Mortality score	Stepwise regression age	Klemera Doubal age	Improvement of Stepwise regression age over mortality score	Improvement of Klemera Doubal age over mortality score				
Men									
Healthy subset	0.701 (0.0081)	0.686 (0.0081)	0.689 (0.0081)	-0.015	-0.012				
Poor health subset	0.737 (0.0043)	0.640 (0.0043)	0.687 (0.0043)	-0.097	-0.050				
Whole population	0.762 (0.0028)	0.707 (0.0028)	0.736 (0.0028)	-0.055	-0.026				
Women									
Healthy subset	0.653 (0.0092)	0.640 (0.0092)	0.635 (0.0092)	-0.013	-0.018				
Poor health subset	0.691 (0.0056)	0.587 (0.0056)	0.620 (0.0056)	-0.104	-0.071				
Whole population	0.721 (0.0034)	0.665 (0.0034)	0.683 (0.0034)	-0.056	-0.038				

	CHD event or death								
	Chronological age	Stepwise regression age	Klemera Doubal age	Improvement of Stepwise regression age over mortality score	Improvement of Klemera Doubal age over mortality score				
Men									
Healthy subset	0.514 (0.0066)	0.658 (0.0066)	0.649 (0.0066)	0.144	0.135				
Poor health subset	0.508 (0.0046)	0.605 (0.0046)	0.632 (0.0046)	0.097	0.124				
Whole population	0.498 (0.0026)	0.663 (0.0026)	0.677 (0.0026)	0.165	0.179				
Women									
Healthy subset	0.602 (0.0111)	0.705 (0.0111)	0.711 (0.0111)	0.103	0.109				
Poor health subset	0.520 (0.0063)	0.639 (0.0063)	0.687 (0.0063)	0.119	0.167				
Whole population	0.513 (0.0038)	0.698 (0.0038)	0.729 (0.0038)	0.185	0.216				

	Age-related hospital admissions								
Mortality so		Stepwise regression age	Klemera Doubal age	Improvement of Stepwise regression age over mortality score	Improvement of Klemera Doubal age over mortality score				
Men									
Healthy subset	0.504 (0.0029)	0.616 (0.0029)	0.615 (0.0029)	0.112	0.111				
Poor health subset	0.503 (0.0030)	0.579 (0.0030)	0.597 (0.0030)	0.076	0.094				
Whole population	0.501 (0.0014)	0.621 (0.0014)	0.630 (0.0014)	0.120	0.129				
Women									
Healthy subset	0.518 (0.0028)	0.591 (0.0028)	0.586 (0.0028)	0.073	0.068				
Poor health subset	0.510 (0.0031)	0.560 (0.0031)	0.582 (0.0031)	0.050	0.072				
Whole population	0.506 (0.0013)	0.597 (0.0013)	0.605 (0.0013)	0.091	0.099				

Table 13: Harrell's C-indices (with standard errors) for chronological age and biological ages, for each outcome and subpopulation in the (A) main analysis (top) and when (B) using the reduced biomarker panel (bottom) (adjusted for environmental factors and health behaviours)

(A) Main analysis

			Death from	chronic disease		
	Chronological	Chronological Stepwise Klemera Klemera Doubal age Improvement of Klemera				
	age	regression age	Doubal age	and Chronological age	Doubal over Chronological age	
Men						
Healthy subset	0.724 (0.0081)	0.699 (0.0081)	0.702 (0.0081)	0.731 (0.0081)	0.007	
Poor health subset	0.658 (0.0043)	0.674 (0.0043)	0.704 (0.0043)	0.705 (0.0043)	0.047	
Whole population	0.725 (0.0028)	0.730 (0.0028)	.730 (0.0028) 0.746 (0.0028)	0.756 (0.0028)	0.031	
Women						
Healthy subset	0.688 (0.0092)	0.665 (0.0092)	0.660 (0.0092)	0.690 (0.0092)	0.002	
Poor health subset	0.617 (0.0056)	0.620 (0.0056)	0.639 (0.0056)	0.642 (0.0056)	0.025	
Whole population	0.699 (0.0034)	0.688 (0.0034)	0.697 (0.0034)	0.713 (0.0034)	0.014	

			CHD ev	ent or death		
	Chronological					
	age	regression age	Doubal age	and Chronological age	Doubal over Chronological age	
Men						
Healthy subset	0.683 (0.0066)	0.678 (0.0066)	0.671 (0.0066)	0.689 (0.0066)	0.006	
Poor health subset	0.628 (0.0046)	0.628 (0.0046)	0.645 (0.0046)	0.650 (0.0046)	0.022	
Whole population	0.699 (0.0026)	0.693 (0.0026)	0.702 (0.0026)	0.714 (0.0026)	0.015	
Women						
Healthy subset	0.720 (0.0111)	0.728 (0.0111)	0.733 (0.0111)	0.743 (0.0111)	0.023	
Poor health subset	0.671 (0.0063)	0.677 (0.0063)	0.707 (0.0063)	0.710 (0.0063)	0.031	
Whole population	0.739 (0.0038)	0.740 (0.0038)	0.759 (0.0038)	0.767 (0.0038)	0.028	

		Age-related hospital admissions					
	Chronological Stepwise Klemera Klemera Dou age regression age Doubal age and Chronological				Improvement of Klemera Doubal over Chronological age		
Men	0	0 0					
Healthy subset	0.660 (0.0029)	0.642 (0.0029)	0.640 (0.0029)	0.662 (0.0029)	0.002		
Poor health subset	0.604 (0.0030)	0.596 (0.0030)	0.609 (0.0030)	0.615 (0.0030)	0.011		
Whole population	0.677 (0.0014)	0.666 (0.0014)	0.673 (0.0014)	0.685 (0.0014)	0.008		
Women							
Healthy subset	0.633 (0.0028)	0.619 (0.0028)	0.614 (0.0028)	0.634 (0.0028)	0.001		
Poor health subset	0.588 (0.0031)	0.586 (0.0031)	0.600 (0.0031)	0.601 (0.0031)	0.013		
Whole population	0.656 (0.0013)	0.649 (0.0013)	0.653 (0.0013)	0.662 (0.0013)	0.006		

(B) Using the reduced biomarker panel

		Death from chronic disease						
	Chronological Stepwise Klemera Klemera Doubal age Improvement of Klemera age regression age Doubal age and Chronological age Doubal over Chronological age							
Men			Ŭ					
Healthy subset	0.724 (0.0081)	0.690 (0.0081)	0.679 (0.0081)	0.726 (0.0081)	0.004			
Poor health subset	0.658 (0.0043)	0.687 (0.0043)	0.682 (0.0043)	0.688 (0.0043)	0.044			
Whole population	0.725 (0.0028)	0.727 (0.0028)	0.720 (0.0028)	0.742 (0.0028)	0.030			
Women								
Healthy subset	0.688 (0.0092)	0.665 (0.0092)	0.666 (0.0092)	0.691 (0.0092)	0.002			
Poor health subset	0.617 (0.0056)	0.624 (0.0056)	0.633 (0.0056)	0.636 (0.0056)	0.023			
Whole population	0.699 (0.0034)	0.691 (0.0034)	0.696 (0.0034)	0.712 (0.0034)	0.012			

			CHD ev	ent or death		
	Chronological	Stepwise	Klemera	Klemera Doubal age	Improvement of Klemera	
	age	regression age Doubal age		and Chronological age	Doubal over Chronological age	
Men						
Healthy subset	0.683 (0.0066)	0.669 (0.0066)	0.664 (0.0066)	0.690 (0.0066)	0.007	
Poor health subset	0.628 (0.0046)	0.626 (0.0046)	0.625 (0.0046)	0.639 (0.0046)	0.011	
Whole population	0.699 (0.0026)	0.686 (0.0026)	0.683 (0.0026)	0.707 (0.0026)	0.008	
Women						
Healthy subset	0.720 (0.0111)	0.735 (0.0111)	0.735 (0.0111)	0.745 (0.0111)	0.025	
Poor health subset	0.671 (0.0063)	0.695 (0.0063)	0.700 (0.0063)	0.706 (0.0063)	0.035	
Whole population	0.739 (0.0038)	0.753 (0.0038)	0.754 (0.0038)	0.764 (0.0038)	0.025	

			Age-related h	ospital admissions	
					Improvement of Klemera Doubal over Chronological age
Men					
Healthy subset	0.660 (0.0029)	0.635 (0.0029)	0.628 (0.0029)	0.661 (0.0029)	0.001
Poor health subset	0.604 (0.0030)	0.597 (0.0030)	0.595 (0.0030)	0.609 (0.0030)	0.007
Whole population	0.677 (0.0014)	0.660 (0.0014)	0.655 (0.0014)	0.680 (0.0014)	0.007
Women					
Healthy subset	0.633 (0.0028)	0.615 (0.0028)	0.614 (0.0028)	0.634 (0.0028)	0.000
Poor health subset	0.588 (0.0031)	0.592 (0.0031)	0.598 (0.0031)	0.600 (0.0031)	0.012
Whole population	0.656 (0.0013)	0.649 (0.0013)	0.652 (0.0013)	0.662 (0.0013)	0.006

Table 14: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist for this study

Abstract Population, and the outcome to be predicted. Productor Abstract 2 DW Prove a summary of objectives, study design, setting, participants, sample size, predictors, pre	Section/Topic	lte	m*	Checklist Item	Page
International struct 1 0.01 population, and the outcome to be predicted. predictors. <	Title and abstract	t			
Participants 2 U Ductome, statistical analysis, results, and conclusions. P2-3 Background and photexies 3a D.V. Sequence of concernent and conc	Title	1	D;V		p1
Introduction Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing model or both. S1 p7-9 Methods 30 0,v Specify the objectives, including whether the study describes the development or validation of the model or both. p4-7 Methods 44 0,v Specify the objectives, including whether the study describes the development or validation of the model or both. S1 p3 Source of data 44 0,v Specify the the study design or source of data (e.g., randomized trial, cohort, or registry data). S1 p3 Participants 55 0,v Specify key elements of the study setting (e.g., primary care, secondary care, general population) S1 p3 Duricome 60 0,v Regord and the outcome that is predicted by the prediction model, including how and when study define at predictors used in developing or validating the multivariable prediction model, including how and when they were measured. NA Predictors 70 0,v Regord any actions to bind assessment of the outcome to be predictor. NA Stands gata 9 0,v Regord any actions to bind assessment of predictors for the outcome and other predictor. NA Stands gata 9	Abstract	2	D;V		p2-3
Background and background and background ba	Introduction				
objectives modes, model or both. modes, model or both. p4-7 Wethods wethods b V. Specify the objectives, including whether the study describes the development or validation of the model or both. p4-7 Source of data 4a b, V. Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), septimized to the study dates, including start of accrual; and of accrual; and, if applicable, end of source of data 51 p3 Participants 5a b, V. Specify the system study dates, including start of accrual; and of accrual; and, if applicable, end of source of data 51 p3 Ductome 6a b, V. Describe eligibility criteria for participants. 51 p3 Ductome 6a b, V. Clearly define the outcome that is predicted by the prediction model, including how and when stepsed. 51 p3 Ductome 6b D, V. Report any actions to blind assessment of predictors for the outcome and other predictors. NA Sample size 0.V. Report any actions to ablind assessment of predictors for the outcome and other predictors. NA Missing data 9 D/V. Report any actions to ablind assessment of predictors for the outcome and other predictors. NA <t< td=""><td></td><td>3a</td><td>D;V</td><td></td><td>S1 p7-9</td></t<>		3a	D;V		S1 p7-9
Methods Imodel of both. Imodel of both. Source of data 4a D-V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), sogarately for the development and validation data sets, if applicable. 51 p3 Participants 5a D-V Specify the key study dates, including start of accrual; and, if applicable, end of study acting including start of accrual; and, if applicable, end of study acting including start of accrual; and, if applicable, end of study acting including start of accrual; and, if applicable, end of study acting including another and location of centres. Study and the study acting including another and location of centres. Study and the study acting including another and location of centres. NA Dutcome 6a D-V Describe fieldbilly criteria for participants. Study and the sessed. NA Sample size 6b D-V Clearly define all predictors used in developing or validating the multivariable prediction model, study. Study and the sessed. NA Sample size B D-V Clearly define all predictors used in developing or validating the multivariable predictors. NA Sample size D-V D-V Clearly define developing or validating the multivariable predictors. NA Sample size D-V D-V D-V	objectives	21			
Source of data 4a by, bescribe the study design or source of data (e.g., randomized trail, cohort, or registry data), by specify the key study dates, including start of accrual, end of accrual, and, if applicable. 51 p3 Source of data by, by Specify the key study dates, including start of accrual, end of accrual, and, if applicable, end of rollow-up. 51 p3 Participants 5a by, Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres. 51 p3 Dutcome 6a by, W devide all of traits for participants. 51 p3 Dutcome 6a by, W devide all of traits for participants. 51 p3 Predictors 7a by, W devide all of traits predictors used in developing or validating the multivariable prediction model, sessesed. NA Sample size 8 by, Y Explain how the study size was arrived at. NA Starging data 9 by, Describe how missing data ever handle (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. 51 p3.5 Statistical analysis method 10a D Describe how missing data ever handle (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. 51 p3.5 Statistical analysis method		30	D;V	model or both.	p4-7
Source of data 4a UV separately for the development and validation data sets, if applicable. 51 p3 Participants 5a D/V Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of st p3 St p3 Participants 5a D/V Specify key elements of the study setting (e.g., primary care, secondary care, general population) St p3 Outcome 6a D/V Rescribe eligibility criteria for participants. St p3 Outcome 6a D/V Rescribe eligibility criteria for participants. St p3 Predictor 7a D/V Rescribe eligibility criteria for participants. NA Sample size 8 D/V Report any actions to bilind assessment of the outcome to be predicted. NA Sample size 8 D/V Report any actions to bilind assessment of predictors for the outcome and other predictors. NA Sample size 8 D/V Report any actions to bilind assessment of predictors for the outcome and other predictor. NA Statistical 10b D Describe how predictors seed in developing or validitorin developing or validitorin, developing or validitorin, developing or validitorin,	Methods	1	1		
4b Dr.y Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up. S1 p3 Participants 5a Dr.y Specify key elements of the study setting (e.g., primary care, secondary care, general population) is Dr.y S1 p3 Dutcome 6a Dr.y Describe eligibility criteria for participants. S1 p3 Outcome 6a Dr.y Report any actions to blind assessment of the outcome to be predicted. NA Predictors 7a Dr.y Report any actions to blind assessment of predictors for the outcome and other predictors. NA Sample size 8 DV Report any actions to blind assessment of predictors for the outcome and other predictors. NA Sample size 8 DV Report any actions to blind assessment of predictors for the outcome and other predictors. NA Sample size 8 DV Report any actions to blind assessment of predictors for the outcome and other predictors. NA Missing data 9 Dr.y Describe how missing data were handled in the analyses. S1 p3 Statistical 10a D Describe how predictors were bandled in the analyses. S1 p7-9	Source of data	4a	D;V	separately for the development and validation data sets, if applicable.	S1 p3
3a 0.9 including number and location of centres. 31 P3 5b 0.9 Describe eligibility cirteria for participants. 51 P3 0utcome 6a 0.9 Clearly define the outcome that is predicted by the prediction model, including how and when seesseed. NA 0utcome 6a D.V Clearly define the outcome that is predicted by the prediction model, including how and when seesseed. NA Predictors 7a D.V. Report any actions to blind assessment of the outcome to be predicted. NA Sample size 8 D.V. Explore than within the were measured. NA Sample size 8 D.V. Explore than within the were measured. S1 p3.5 Wissing data 9 D.V. Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple S1 p3.5 S1 p7-9 10b D Describe how predictors were handled in the analyses. S1 p7-9 10c V Pervalidation. S1 p3-9 10b D Describe how predictors were calculated. S1 p3-9 10c V Pervalidation. S1 p3-9 10c V Pervalidation. S1 p3-9 <		4b	D;V		S1 p3
356LyvDescribe alignmity criteria for participants.51 p3-40utcome66D,VClearly define the outcome that is predicted by the prediction model, including how and when assessed.S1 p5-60utcome7aD,VClearly define the outcome that is predicted by the prediction model, including how and when assessed.S1 p5-70utcome7aD,VClearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.S1 p5.70utcome7bD/VReport any actions to blind assessment of predictors for the outcome and other predictors.NASample size8D/VExplain how the study size was arrived at.S1 p3.510aDDescribe how missing data were handled in the analyses.S1 p7-910bDDescribe how medictors were handled in the analyses.S1 p7-910cVFor validation, describe how the predictions were calculated.S1 p8-910aDDescribe how the predictions were calculated.S1 p8-910bDSpecify type of model, all model-building procedures (including any predictor selection), and models.S1 p3-910bDSpecify all measures used to assess model performance and, if relevant, to compare multiple models.S1 p3-910cVPorvide details on how risk groups were created, if done.S1 p9-910bDyProvide details on how risk groups were created, if done.S1 p3-610cVPorvide details on how risk groups were created, if done.S1	Dorticipanto	5a	D;V		S1 p3
Outcome 6a D:V Clearly define the outcome that is predicted by the prediction model, including how and when assessed. S1 p5-6 Outcome 7a D:V Report any actions to blind assessment of the outcome to be predicted. NA Predictors 7b D:V Report any actions to blind assessment of predictors for the outcome and other predictors. NA Sample size 8 D:V Explain how the study size was arrived at. S1 p3 Missing data 9 D:V Describe how missing data were handled (eg., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. S1 p3.5 Statistical analysis methods 10a D Describe how missing data were handled (eg., complete-case analysis, single imputation, multiple method for internal validation. S1 p7-9 10c V Por validation, describe how the predictions were calculated. S1 p7-9 10c V Describe any model updating (e.g., recalibration) arising from the validation, if done. S1 p9-9 11b D:V Providiation, discribe how the predictoris were treated, if done. S1 p3-5, 29 12c V For validation, chantify any differences from the development data in setting, eligibility cr	Participants	5b	D;V	Describe eligibility criteria for participants.	S1 p3-4
Dutcome bit UV assessed. SI D-5 Outcome 6b D/V Report any actions to blind assessment of the outcome to be predicted. NA Predictors 7a D/V Clearly define all predictors used in developing or validating the multivariable predictors. NA Sample size 8 D/V Explain how the study size was arrived at. S1 p3-5 Missing data 9 D/V Explain how the study size was arrived at. S1 p3-5 Missing data 9 D/V Explain how the study size was arrived at. S1 p3-5 Missing data 9 D/V Describe how predictors were handled (e.g., complete-case analysis, single imputation, multiple imputation, multiple imputation, multiple imputation, discribe how the predictors were calculated. S1 p3-5 Missing data 10 D Describe how predictors were calculated. S1 p3-5 10c V For validation, discribe how the predictors were calculated. S1 p3-5 10c V Specify tale measures used to assess model performance and, if relevant, to compare multiple models. S1 p3-5 10c V Describe any model updating (e.g., crealibration) arising from the vali		5c	D;V	Give details of treatments received, if relevant.	NA
Predictors 7a D;V Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured. S1 p5,7 7b D;V Report any actions to blind assessment of predictors for the outcome and other predictors. NA Sample size 8 D;V Explain how the study size was arrived at. S1 p3,5 Missing data D;V Explain how the study size was arrived at. S1 p3,5 Missing data D;V Explain how the study size was arrived at. S1 p3,5 Missing data D;V Explain how the study size was arrived at. S1 p7-9 10a D Describe how predictors were handled in the analyses. S1 p7-9 10b D Specify type model, all model-building procedures (including any predictor selection), and s1 p7-9 S1 p3-7 10c V Eor validation, describe how the predictions were calculated. S1 p7-9 10c V Describe any model updating (e.g., recalibration) arising from the validation, if done. S1 p7-9 10c V Describe the flow of participants through the study, including the number of participants with and wita in setting, eligibility criteria, unicome and, if applicable, a summary of	Outcome	6a	D;V		S1 p5-6
Predictors 7a D/V Including how and when they were measured. S1 p3, / Sample size 8 D/V Report any actions to blind assessment of predictors for the outcome and other predictors. NA Sample size 8 D/V Report any actions to blind assessment of predictors for the outcome and other predictors. NA Missing data 9 D/V Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. S1 p3,5 Missing data 9 D/V Describe how predictors were handled in the analyses. S1 p7-9 10a D Describe how predictors were handled in the analyses. S1 p7-9 10b D Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. S1 p7-9 10c V For validation, describe how the predictors were calculated. S1 p7-9 10d D/V Provide details on how risk groups were created, if done. S1 p9 Nak groups 11 D/V Provide details on how risk groups were created, if done. S1 p3-5,29 Deveropement vs. 12 V <td></td> <td>6b</td> <td>D;V</td> <td>Report any actions to blind assessment of the outcome to be predicted.</td> <td>NA</td>		6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	NA
Sample size 8 D;V Explain how the study size was arrived at. S1 p3 Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation unith details. S1 p3.5 Statistical analysis methods 10a D Describe how predictors were handled in the analyses. S1 p7-9 10b D Describe how predictors were handled in the analyses. S1 p7-9 10c V For validation, describe how the predictions were calculated. S1 p7-9 10c V For validation, describe how the predictions were calculated. S1 p7-9 10d D;V For validation, describe how the predictions were calculated. S1 p7-9 10d V For validation, describe how the prediction are and, if relevant, to compare multiple models. S1 p7-9 10d D;V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. NA Nalidation 11 D;V Provide details on how risk groups were created, if done. S1 p3-5,29 helpful. 13a D;V Describe the flow of participants throug	Predictors	7a	D;V		S1 p5,7
Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. S1 p3,5 Statistical analysis methods 10a D Describe how predictors were handled in the analyses. S1 p7-9 Statistical analysis methods 10b D Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. S1 p7-9 10c V For validation, describe how the predictions were calculated. S1 p7-9 10d D,V Specify all measures used to assess model performance and, if relevant, to compare multiple models. S1 p7-9 10e V Describe how the predictions were created, if done. S1 p7-9 10e V Describe now risk groups were created, if done. S1 p9 Powelopment vs. 12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. NA Results 13a D;V Describe the flow of participants through the study, including the number of participants with and variables (demographics, predictors and outcome). S1 p3-5,29 Participants 13b D;V <		7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	NA
Withsing data 9 D/V Imputation) with details of any imputation method. 31 p3,3 Statistical analysis methods 10a D Describe how predictors were handled in the analyses. 51 p7.9 Statistical analysis methods 10c V For validation, describe how the predictions were calculated. 51 p8.9 10c V For validation, describe how the predictions were calculated. 51 p9.9 10d D/V Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. 51 p8.9 10d D/V Provide details on how risk groups were created, if done. 51 p9 Pervelopment vs. validation 12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. NA Results 13a D/V Porceibe the flow of participants through the study, including the number of participants with and helpful. 51 p3-5.29 13a D/V Por validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). NA Model 14a D Specify the number of participants with and outcome.	Sample size	8	D;V		S1 p3
Statistical analysis methods10bDSpecify type of model, all model-building procedures (including any predictor selection), and method for internal validation.51 p7-910cVFor validation, describe how the predictions were calculated.51 p7-910dD,VSpecify all measures used to assess model performance and, if relevant, to compare multiple models.51 p7-910eVDescribe any model updating (e.g., recalibration) arising from the validation, if done.51 p7-920eVDescribe any model updating (e.g., recalibration) arising from the validation, if done.51 p9Development vs. validation12VFor validation, describe the gravity of the development data in setting, eligibility criteria, outcome, and predictors.NAResultsDescribe the flow of participants through the study, including the number of participants with and helpful.S1 p3-5,29Participants13aD;VDescribe the flow of participants through the study, including the number of participants with maising data for predictors and outcome.S1 p3-613aD;VDescribe the characteristics of the participants with missing data for predictors and outcome.NAModel14aDSpecify the number of participants and outcome.NAModel15aDPresent the full prediction model to allow predictions and outcome.NAModel15aDExplain how to use the prediction model.S1 p2-0Specification15bDExplain how to use the prediction model.S1 p2-0Model16 <td< td=""><td>Missing data</td><td>9</td><td>D;V</td><td></td><td>S1 p3,5</td></td<>	Missing data	9	D;V		S1 p3,5
Statistical analysis methods100Dmethod for internal validation.S1 p7-910cVFor validation, describe how the predictions were calculated.S1 p8-910dD;VSpecify all measures used to assess model performance and, if relevant, to compare multiple models.S1 p7-910dD;VSpecify all measures used to assess model performance and, if relevant, to compare multiple models.S1 p7-911D;VProvide details on how risk groups were created, if done.S1 p9Development vs. validation12VFor validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.NAResults		10a	D	Describe how predictors were handled in the analyses.	S1 p7-9
analysis methods 10c V For validation, describe how the predictions were calculated. S1 p8-9 10d D,V Specify all measures used to assess model performance and, if relevant, to compare multiple models. S1 p7-9 10d D,V Specify all measures used to assess model performance and, if relevant, to compare multiple models. S1 p7-9 Risk groups 11 D,V Provide details on how risk groups were created, if done. S1 p9 Development vs. validation 12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. NA Results Discribe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. S1 p3-5,29 Participants 13a D;V Discribe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. S1 p3-6 13a V For validation, dentify any differences and outcome events in each analysis. S1 p3-6 13b D;V Describe the characteristics of the participants with missing data for predictors and outcome. NA	Statistical	10b	D		S1 p7-9
IndexDeckSpecify all measures used to assess model performance and, if relevant, to compare multiple models.S1 p7-910eVDescribe any model updating (e.g., recalibration) arising from the validation, if done.S1 p9Risk groups11D;VProvide details on how risk groups were created, if done.S1 p9Development vs. validation12VFor validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.NAResults		10c	V	For validation, describe how the predictions were calculated.	S1 p8-9
Risk groups11D;VProvide details on how risk groups were created, if done.S1 p9Development vs. validation12VFor validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.NAResults13aD;VDescribe the flow of participants through the study, including the number of participants with and helpful.S1 p3-5,29Participants13aD;VDescribe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.S1 p3-613bD;VDescribe the characteristics of the participants with missing data for predictors and outcome.S1 p3-613cVFor validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).NAModel14aDSpecify the number of participants and outcome events in each analysis.S1 p18Model15aDPresent the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).S1 p2-20Model16D;VReport performance measures (with Cls) for the prediction model.S1 p2-20Model-14bDSi done, report the results from any model updating (i.e., model specification, modelS1 p2-20Model16D;VReport performance measures (with Cls) for the prediction model.S1 p2-20Model-16D;VNaPr	analysis methous	10d	D;V		S1 p7-9
Development vs. validation 12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. NA Results Describe the flow of participants through the study, including the number of participants with and helpful. S1 p3-5,29 Participants 13a D;V Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. S1 p3-6 Model 14a D Specify the number of participants and outcome). NA Model 14a D Specify the number of participants and outcome). NA Model 14b D Specify the number of participants and outcome events in each analysis. S1 p18 Model 15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). S1 p20 Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model NA Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model NA		10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	S1 p9
validation12Voutcome, and predictors.NAResultsParticipants13aD;VDescribe the flow of participants through the study, including the number of participants with and helpful.S1 p3-5,29Participants13bD;VDescribe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.S1 p3-613cVFor validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).NAModel14aDSpecify the number of participants and outcome events in each analysis.S1 p18Model15aDPresent the full prediction model to allow predictors for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).S1 p2-20Model16D;VReport performance measures (with Cls) for the prediction model.S1 p2-20Model17VIf done, report the results from any model updating (i.e., model specification, model performance).NADiscussion18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NAInterpretation19aVFor validation of the results, considering objectives, limitations, results from any other validation data.p16-2	Risk groups	11	D;V	Provide details on how risk groups were created, if done.	S1 p9
Participants13aDescribe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.S1 p3-5,2913bD;VDescribe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.S1 p3-613cVFor validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).NAModel14aDSpecify the number of participants and outcome events in each analysis.S1 p18development14bDIf done, report the unadjusted association between each candidate predictor and outcome.NAModel15aDPresent the full prediction model.S1 p20Model15bDExplain how to use the prediction model.S1 p24- 26,39Model17VReport performance measures (with Cls) for the prediction model.NADiscussion18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NAInterpretation19aVFor validation data.p16-21	Development vs. validation	12	v		NA
Participants13aD;Vwithout the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.\$1 p3-5,29Participants13bD;VDescribe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.\$1 p3-613cVFor validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).NAModel14aDSpecify the number of participants and outcome events in each analysis.S1 p3-6Model14bDIf done, report the unadjusted association between each candidate predictor and outcome.NAModel15aDPresent the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).S1 p2-0Model performance16D;VReport performance measures (with Cls) for the prediction model.p19-20Model-updating performance17VIf done, report the results from any model updating (i.e., model specification, model performance).NADiscussion18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NAInterpretation19bD;VGive an overall interpretation of the results, considerin	Results	-			
Participants13bD;VDescribe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.S1 p3-613cVFor validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).NAModel14aDSpecify the number of participants and outcome events in each analysis.S1 p18development14bDIf done, report the unadjusted association between each candidate predictor and outcome.NAModel15aDPresent the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).S1 p2-0Model16bDExplain how to use the prediction model.p19-20Model-updating17VIf done, report the results from any model updating (i.e., model specification, model performance).NADiscussion18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NA19bD;VGive an overall interpretation of the results, considering objectives, limitations, results from miniar studies, and other relevant evidence.p16-21		13a	D;V	without the outcome and, if applicable, a summary of the follow-up time. A diagram may be	S1 p3-5,29
13cVFor validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).NAModel14aDSpecify the number of participants and outcome events in each analysis.S1 p18development14bDIf done, report the unadjusted association between each candidate predictor and outcome.NAModel15aDPresent the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).S1 p20Model15bDExplain how to use the prediction model.p19-20Model performance16D;VReport performance measures (with Cls) for the prediction model.S1 p24- 26,39Model-updating17VIf done, report the results from any model updating (i.e., model specification, model performance).NADiscussion18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NA19bD;VGive an overall interpretation of the results, considering objectives, limitations, results from any other validation, and other relevant evidence.p16-21	Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available	S1 p3-6
Model14aDSpecify the number of participants and outcome events in each analysis.S1 p18development14bDIf done, report the unadjusted association between each candidate predictor and outcome.NAModel15aDPresent the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).S1 p20Model15bDExplain how to use the prediction model.p19-20Model performance16D;VReport performance measures (with Cls) for the prediction model.S1 p24- 26,39Model-updating17VIf done, report the results from any model updating (i.e., model specification, modelNADiscussion18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NA19bD;VGive an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.p16-21		13c	v	For validation, show a comparison with the development data of the distribution of important	NA
development14bDIf done, report the unadjusted association between each candidate predictor and outcome.NAModel15aDPresent the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).S1 p20IsbDExplain how to use the prediction model.p19-20Model performance16D;VReport performance measures (with Cls) for the prediction model.S1 p24- 26,39Model-updating17VIf done, report the results from any model updating (i.e., model specification, model performance).NADiscussion18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NA19bD;VGive an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.p16-21	Model	14a	D		S1 n18
Model specification15aDPresent the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).S1 p20Model performance16D;VReport performance measures (with CIs) for the prediction model.p19-20Model-updating17VIf done, report the results from any model updating (i.e., model specification, model performance).NADiscussion18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NA19bD;VGive an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.p16-21		-			
Model specification15aDcoefficients, and model intercept or baseline survival at a given time point).S1 p20specification15bDExplain how to use the prediction model.p19-20Model performance16D;VReport performance measures (with CIs) for the prediction model.S1 p24- 26,39Model-updating17VIf done, report the results from any model updating (i.e., model specification, model performance).NADiscussionIt done, report the results from any model updating (i.e., model specification, model performance).p20Limitations18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NA19bD;VGive an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.p16-21					
Model performance15bDExplain how to use the prediction model.p19-20Model performance16D;VReport performance measures (with CIs) for the prediction model.S1 p24- 26,39Model-updating17VIf done, report the results from any model updating (i.e., model specification, model performance).NADiscussionItimitations18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NA19bD;VGive an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.p16-21		15a	ט		S1 p20
performance 16 D;V Report performance measures (with CIs) for the prediction model. 26,39 Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model NA Discussion Image: Comparison of the study (such as nonrepresentative sample, few events per predictor, missing data). P20 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. NA 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. p16-21	specification	15b	D	Explain how to use the prediction model.	p19-20
Model-updating 17 V performance). NA Discussion Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). Discuss any limitation, discuss the results with reference to performance in the development data, and any other validation data. p20 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. NA 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. p16-21	Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	-
Discussion Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). p20 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. NA 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. p16-21	Model-updating	17	v		
Limitations18D;VDiscuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).p20Interpretation19aVFor validation, discuss the results with reference to performance in the development data, and any other validation data.NA19bD;VGive an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.p16-21	Discussion		•		
19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. NA 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. p16-21	Limitations	18	D;V		p20
Interpretation Image: Discrete state	Intornatio	19a	v	For validation, discuss the results with reference to performance in the development data, and	NA
	interpretation	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from	p16-21
	Implications	20	D;V		p20-21

Other information							
Supplementary information	21	1.1.1	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	S1 p3			
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	p21-22			

This study is a development and internal validation study under TRIPOD guidelines³⁶

*Items relevant to model development are denoted by D, items relating to model validation are denoted by V

Figure 1: Flowchart of selection of study population, before population stratification

Figure 2: Flowchart of the classification process for UK Biobank medication names

^ Classification in this step was reviewed by a clinician

Figure 3: Biomarker-age trends for the 72 candidate biomarkers, healthy men vs healthy women

Healthy menHealthy women

Healthy menHealthy women

Figure 4: Assessment of the need for stratification of healthy never vs healthy ex smokers: biomarker-age trends for the lung function biomarkers and systolic blood pressure, by sex

Key:

Healthy never smokers

Healthy ex smokers

PC17 (eigenvalue: 1.19)

PC10 (eigenvalue: 1.71)

Biomarkers

PC34 (eigenvalue: 0.76)

PC33 (eigenvalue: 0.78)

Diastolic blood pressure Systolic blood pressure Pulse rate Apolipoprotein A Apolipoprotein A Lipoprotein (a) High density lipoprotein Inglycerides Mean platelet volume Platelet count Platelet count Platelet count Platelet count Platelet count Blood glucose HbArc Insulin-like growth factor 1 Sex hormone-binding globulin Haemoglobin concentration Diastolic blood pressure Systolic blood pressure Apolipoprotein A Apolipoprotein A Lipoprotein (a) High density lipoprotein Low density lipoprotein Triglycerides Mean Platelet volume Platelet count Platelet count Platelet count Platelet count Diatelet count Platelet count Diatelet count Dia Diastolic blood pressure Systolic blood pressure Apolipoprotein A Apolipoprotein B Lipoprotein (a) High density lipoprotein Low density lipoprotein Triglycendes Mean plajelet volume Platelet distribution widh Log C-Reactive Protein Blood glucose thormone-Dinging globulin Insulin-like growth factor 1 Sex hormone-binding globulin lestosterone Insulin-like growth factor 1 Sex hormone-binding globulin lestosterone lestosterone Haemoglobin concentration HLS reticulocyte count Immature reticulocyte fraction Mean corpuscular volume Mean reticulocyte volume Mean spherical cell volume Total red blood cell count Red blood cell distribution width Reticulocyte count Iestosterone -Haemoglobin concentration HLS reticulocyte count Immature reticulocyte fraction Mean corpuscular volume Mean reticulocyte volume Mean spherical cell volume Total red blood cell count Jotal red blood cell count Haemoglobin concentration HLS reticulocyte count Inmature reticulocyte fraction Mean corpuscular volume Mean corpuscular volume Mean retruilocyte volume Mean spherical cell volume Iotal red blood cell count Red blood cell distribution width Reticulocyte count Mean corpuscular haemoglobin conceptration Aloging aminetropretere Red blood cell distribution width -Reticulocyte count -Reticulocyte count Mean corpuscular haemoglobin conceptration Alanine aminotransferase Aspartate aminotransferase Direct bilirubin Gamma Glutamytiransferase Heel bone density Body mass index Standing height Standing height Higo circumference Mean corpuscular haemoglobin concentration Alanine aminotransferase Aspartate aminotransferase Direct bilirubin Gamma Glutanytiransferase Heel bone density Body mass index Standing height Standing height Alanine aminotransferase Aspartate aminotransferase Direct bilirubin Total bilirubin Biomarkers Biomarkers Gamma Glutamyltransferase Heel bone density Body mass index = Sitting height = Standing height = Hip circumference = Hip circumference -Waist circumference -Hip circumference -Waist circumference -Waist circumference Waist-hip ratio Body fat-free mass Body fat percentage Hand grip strength/height Alkaline Phosphatase Calcium Rheumatoid factor Pars matching test Urinary, microalbumin Waist circumference -Waist-hip ratio Weight Waist-hip ratio Weight Body fat-free mass Body fat mass Body fat mass Body fat percentage Metabolic rate Alkaline Phosphatase Calcium Rheumatoid factor Reaction time test Pairs matching test Urinary microalbumin Weigni Body fat-free mass Body fat percentage Metabolic rate Hand orp strength/height Alkaline Phosphatase Calcium Rheumatoid factor Vitamin D Reaction time test Diamanta calcium Resolution time test Pairs matching test Urinary microalbumin Urinary sodium Pairs matching test Urinary microalbumin Urinary sodium Urinary creatinine Urinary potassum Urea Creatinine Cystatin C Phosphate Total protein Pairs matching test Urinary microalbymin Urinary sodium Urinary creatinine Urinary potassium Urea Creatinine Cvstatin C Urinary creatinine Urinary potassium Urea Cystatin C Phosphate Cystatin C Phosphate Total protein Urate Total protein Urate Total protein Urate Forced expiratory volume in 1:Sheight Forced vital capacity/height Eosinophil colint Lymphocyte count Neutrophil count Basophil count Total white blood coll count Forced expiratory volume in 1s/height Forced vital capacity/height Eosinophil count Forced expiratory volume in 15/height Forced vital capacity/height Eosinophil count Lymphocyte count Monocyte count Neutrophil count Lymphocyte count Monocyte count Neutrophil count Basophil count Basophil count · Total white blood cell count Total white blood cell count Total white blood cell count -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0 Rotated factor loading Rotated factor loading Rotated factor loading Alkaline phosphatase Sex hormone-binding globulin Reaction time test

PC30 (eigenvalue: 0.84)

Biomarkers

1.0

PC43 (eigenvalue: 0.56)

PC42 (eigenvalue: 0.57)

Diastolic blood pressure Systolic blood pressure Pulse rate Apolipoprotein A Apolipoprotein A Lipoprotein (a) High density (poprotein Cow density (poprotein Cow density (poprotein Platelet count Platel Diastolic blood pressure Systolic blood pressure Apolipoprotein A Apolipoprotein A Lipoprotein (a) High density lipoprotein Low density lipoprotein Tatelet course Mean platelet volume Platelet crit Platelet distribution widh Log C-Reactive Protein Blood glucose HbA1c Insulin-like growth factor 1 Diastolic blood pressure Systolic blood pressure Pulse rate Apolipoprotein A Lipoprotein (a) High density lipoprotein Low density lipoprotein rigitycendes Low density lipoprotein = Triglycerides Mean platelet volume = Platelet count = Platelet cistribution width Log C-Reactive Protein Blood glucose = HbA1c = nsulin-like growth factor 1 = Insulin-like growth factor 1 Sex hormone-binding globulin lestosterone Insulin–like growth factor 1 Sex hormone–binding globulin Iestosterone Insulin-like growth factor 1 Sex hormone-binding globulin lestosterone Sex hormone-binging globulin lestosterone Haenroglobin concentration HLS reticulocyte count Immature reticulocyte fraction Mean corpuscular volume Mean spherical cell volume Mean spherical cell volume Iotal red blood cell distribution width Reticulocyte count Reticulocyte count Alanine aminotransferase Aspartate aminotransferase Direct pilrubin Gamma Glutamyttransferase Sting height Standing height Heel bone density Body mass index Sting height Hip circumference Waist - twp, rato Testosterone Haemoglobin concentration HLS reticulocyte count Immature reticulocyte fraction Mean corpuscular volume Mean reticulocyte volume Mean spherical cell volume Total red blood cell count Red blood cell distribution width Reticulocyte count Mean corpuscular haemoglobin concentration Alanine aminotransferase Haemoglobin concentration HLS reticulocyte count Immature reticulocyte fraction Mean corpuşcular volume Mean corpuscular volume Mean retrulocyte volume Mean spherical cell volume Iotal red blood cell count Red blood cell distribution width Reticulocyte count Mean corpuscular haemoglobin concentration Aloning aminetroproference Alanine aminotransferase Aspartate aminotransferase Direct bilirubin Total bilirubin Alanine aminotransferase Aspartate aminotransferase Direct bilirubin Total bilirubin Biomarkers Biomarkers Gamma Glutamylirrubin Gamma Glutamylirransferase Heel bone density Body, mass index Sitting height Standing height Hip circumference Gamma Glutanyitransferase Heel bone density Body mass index Sitting height Standing height Hip circumference Waist circumference -Waist circumference -Waist-hip ratio Weight Waist-hip ratio Waist-hip ratio Weight Body fat-free mass Body fat percentage Body fat percentage Hand grip strength/height Alkaline Phosphatase Calcium Rheumatoid factor Vitamin D Reaction time test Pairs matching test Urinary microalbumin Body fat-free mass Body fat mass Body fat percentage Metabolic rate Body fat-free mass Body fat mass Body fat percentage Metabolic rate Hand orp strength/height Alkaline Phosphatase Calcium Rheumatoid factor Vitamin D Reaction time test Hand grip strength/height Alkaline Phosphatase Calcium Rheumatoid factor Vitamin D Reaction time test Disc matching test Pairs matching test Pairs matching test Urinary microalbumin Urinary sodium Urinary microalbymin Urinary sodium Urinary creatinine Urinary potassium Urinary sodium -Urinary creatinine -Urinary potassium -Urinary creatinine -Urinary potassium -Urea -Creatinine -Urea Creatinine Urea Creatinine Cystatin C Phosphate Cystatin C Phosphate Cystatin C Phosphate Total protein Urate Total protein Urate Total protein Urate Forced expiratory volume in 1s/height Forced vital capacity/height Eosinophil count Forced expiratory volume in 1s/height Forced vital capacity/height Eosinophil count Forced expiratory volume in 1s/height -Forced vital capacity/height -Eosinophil count -Lymphocyte count Monocyte count Neutrophil count Basophil count Lymphocyte count -Monocyte count -Neutrophil count -Lymphocyte count Monocyte count Neutrophil count Basophil count Total white blood cell count Basophil count Total white blood cell count Total white blood cell count -1.0 -0.5 0.0 0.5 1.0 0.5 -1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 1.0 1.0 Rotated factor loading Rotated factor loading Rotated factor loading Hand grip strength/height HbA1c Urea

PC35 (eigenvalue: 0.73)

PC48 (eigenvalue: 0.45)

Figure 6: 10-fold cross validation prediction errors (with standard error bars) for each subset of principal components (to a maximum of 55) using (A) Klemera Doubal age (top) and (B) stepwise regression age (bottom), for healthy men (left) and women (right)

(A) Klemera Doubal age

(B) Stepwise regression age

These plots display prediction errors (mean square errors of biological ages; y-axes) and their standard error bars, for each biological age constructed from the specified number of principal components (x-axes). They were used to search for an elbow point, where beyond the elbow point there were diminishing changes in prediction error by increasing number of principal components.

(A) Klemera Doubal ages

These plots indicate how well biological ages (y-axes) are calibrated to chronological age (x-axes), and the variability (indicated by ± 1 standard deviation bars) of individuals' biological ages in each 2.5-year chronological age group.

Figure 8: Kaplan-Meier plots for (1) mortality from chronic disease, (2) age-related hospital admissions and (3) CHD event or death, of the differences between chronological age and (A) Klemera Doubal or (B) stepwise regression biological ages, for healthy men (left) and healthy women (right)

(1) Mortality from chronic disease

(B) Stepwise regression ages

Time is measured in years from baseline assessment

(2) CHD event or death

(A) Klemera Doubal ages

BA: biological age, CA: chronological age

Time is measured in years from baseline assessment

(3) Age-related hospital admissions

BA: biological age, CA: chronological age Time is measured in years from baseline assessment

References

1. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. *PLoS Med* 2015; **12**(3): e1001779.

2. UK Biobank. UK Biobank. <u>http://www.ukbiobank.ac.uk/</u> (accessed 1 August 2019).

3. NHS Business Services Authority. BNF Code Information. 2017. <u>https://www.nhsbsa.nhs.uk/</u> (accessed 6 December 2017).

4. Brilleman SL, Salisbury C. Comparing measures of multimorbidity to predict outcomes in primary care: a cross sectional study. *Fam Pract* 2013; **30**(2): 172-8.

5. Tran J, Norton R, Conrad N, et al. Patterns and temporal trends of comorbidity among adult patients with incident cardiovascular disease in the UK between 2000 and 2014: A population-based cohort study. *PLoS Med* 2018; **15**(3): e1002513.

6. Kang YG, Suh E, Lee JW, Kim DW, Cho KH, Bae CY. Biological age as a health index for mortality and major age-related disease incidence in Koreans: National Health Insurance Service - Health screening 11-year follow-up study. *Clin Interv Aging* 2018; **13**: 429-36.

7. Gupta RP, Strachan DP. Ventilatory function as a predictor of mortality in lifelong non-smokers: evidence from large British cohort studies. *BMJ Open* 2017; **7**(7): e015381.

8. Nakamura E, Miyao K. A method for identifying biomarkers of aging and constructing an index of biological age in humans. *J Gerontol A Biol Sci Med Sci* 2007; **62**(10): 1096-105.

9. Jia L, Zhang W, Chen X. Common methods of biological age estimation. *Clin Interv Aging* 2017; **12**: 759-72.

10. UK Biobank. Companion Document to Accompany Serum Biomarker Data. 2019.

http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf (accessed 22 July 2019). 11. Yoo J, Kim Y, Cho ER, Jee SH. Biological age as a useful index to predict seventeen-year survival and mortality in Koreans. *BMC Geriatr* 2017; **17**(1): 7.

12. Mamoshina P, Kochetov K, Putin E, et al. Population specific biomarkers of human aging: a big data study using South Korean, Canadian and Eastern European patient populations. *J Gerontol A Biol Sci Med Sci* 2018.

13. Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? *J Gerontol A Biol Sci Med Sci* 2013; **68**(6): 667-74.

14. Levine ME, Crimmins EM. A comparison of methods for assessing mortality risk. *Am J Hum Biol* 2014; **26**(6): 768-76.

15. Jee H, Park J. Selection of an optimal set of biomarkers and comparative analyses of biological age estimation models in Korean females. *Arch Gerontol Geriatr* 2017; **70**: 84-91.

16. Mitnitski A, Howlett SE, Rockwood K. Heterogeneity of Human Aging and Its Assessment. *J Gerontol A Biol Sci Med Sci* 2017; **72**(7): 877-84.

17. Gilbert T, Neuburger J, Kraindler J, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. *Lancet* 2018; **391**(10132): 1775-82.

18. Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. *The Lancet Public Health* 2018; **3**(7): e323-e32.

19. Vetrano DL, Palmer K, Marengoni A, et al. Frailty and Multimorbidity: A Systematic Review and Meta-analysis. *J Gerontol A Biol Sci Med Sci* 2019; **74**(5): 659-66.

20. Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP. Frailty: implications for clinical practice and public health. *Lancet* 2019; **394**(10206): 1365-75.

21. Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. *Nat Genet* 2019; **51**(3): 481-93.

22. Zhang W, Jia L, Cai G, et al. Model Construction for Biological Age Based on a Cross-Sectional Study of a Healthy Chinese Han population. *Journal of Nutrition, Health & Aging* 2017; **21**(10): 1233-9.

23. Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults. *Proc Natl Acad Sci U S A* 2015; **112**(30): E4104-10.

24. Nakamura E, Miyao K, Ozeki T. Assessment of biological age by principal component analysis. *Mech Ageing Dev* 1988; **46**(1-3): 1-18.

25. Cho IH, Park KS, Lim CJ. An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI). *Mech Ageing Dev* 2010; **131**(2): 69-78.

26. Zhong X, Lu Y, Gao Q, et al. Estimating Biological Age in the Singapore Longitudinal Aging Study. *The Journals of Gerontology: Series A, Biological sciences and medical sciences* 2019.

27. Klemera P, Doubal S. A new approach to the concept and computation of biological age. *Mech Ageing Dev* 2006; **127**(3): 240-8.

28. Cohen AA, Milot E, Li Q, et al. Detection of a novel, integrative aging process suggests complex physiological integration. *PLoS One* 2015; **10**(3): e0116489.

29. Ganna A, Ingelsson E. 5 year mortality predictors in 498,103 UK Biobank participants: a prospective population-based study. *Lancet* 2015; **386**(9993): 533-40.

30. Liu Z, Kuo P-L, Horvath S, Crimmins E, Ferrucci L, Levine M. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. *PLoS Med* 2018; **15**(12): e1002718.

31. Genizi A. Decomposition of R^2 in multiple regression with correlated regressors. *Statistica Sinica* 1993; **3**(2): 407-20.

32. Groemping U. Relative Importance for Linear Regression in R: The Package relaimpo. *J Stat Soft* 2006; **17**(1): 27.

33. Grömping U. Variable importance in regression models. *Wiley Interdisciplinary Reviews: Computational Statistics* 2015; **7**(2): 137-52.

34. Therneau T. A Package for Survival Analysis in S. Version 2.38. 2015. <u>https://CRAN.R-project.org/package=survival</u>. (Accessed 5 November 2019)

35. Nagelkerke NJD. A note on a general definition of the coefficient of determination. *Biometrika* 1991; **78**(3): 691-2.

36. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD StatementThe TRIPOD Statement. *Ann Intern Med* 2015; **162**(1): 55-63.