PT - JOURNAL ARTICLE AU - Harish N. Vasudevan AU - Peng Xu AU - Venice Servellita AU - Steve Miller AU - Leqian Liu AU - Allan Gopez AU - Charles Y. Chiu AU - Adam R. Abate TI - Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification AID - 10.1101/2020.09.02.20186023 DP - 2020 Jan 01 TA - medRxiv PG - 2020.09.02.20186023 4099 - http://medrxiv.org/content/early/2020/09/03/2020.09.02.20186023.short 4100 - http://medrxiv.org/content/early/2020/09/03/2020.09.02.20186023.full AB - The COVID-19 pandemic caused by the SARS-CoV-2 virus motivates diverse diagnostic approaches due to the novel causative pathogen, incompletely understood clinical sequelae, and limited availability of testing resources. Given the variability in viral load across and within patients, absolute viral load quantification directly from crude lysate is important for diagnosis and surveillance. Here, we investigate the use of digital droplet PCR (ddPCR) for SARS-CoV-2 viral load measurement directly from crude lysate without nucleic acid purification. We demonstrate ddPCR accurately quantifies SARS-CoV-2 standards from purified RNA and multiple sample matrices, including commonly utilized universal transport medium (UTM). In addition, we find ddPCR functions robustly at low input viral copy numbers on nasopharyngeal swab specimens stored in UTM without upfront RNA extraction. We also show ddPCR, but not qPCR, from crude lysate shows high concordance with viral load measurements from purified RNA. Our data suggest ddPCR offers advantages to qPCR for SARS-CoV-2 detection with higher sensitivity and robustness when using crude lysate rather than purified RNA as input. More broadly, digital droplet assays provide a potential method for nucleic acid measurement and infectious disease diagnosis with limited sample processing, underscoring the utility of such techniques in laboratory medicine.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was funded in part by the Chan Zuckerberg Biohub, National Science Foundation Career Award DBI-1253293 (ARA), NIH grants R01-EB019453 (ARA), R01-HL105704 (CYC), and R33-129077 (CYC), and the Charles and Helen Schwab Foundation (CYC). These funders had no role in study design, data collection and analysis, writing the manuscript, or decision to publish.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Clinical nasopharyngeal swab samples from patients infected with SARS-CoV-2 were collected in UTM and acquired by the Chiu laboratory with approval of the University of California San Francisco (UCSF) Institutional Review Board (IRB). The approved study was a no-subject contact biobanking protocol using remnant clinical samples with waiver of consent under approval from the University of California San Francisco (UCSF) Institutional Review Board (IRB).All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data is available as primary or supplemental figures in the manuscript.