RT Journal Article SR Electronic T1 Leave No Child Behind: Using Data from 1.7 Million Children from 67 Developing Countries to Measure Inequality Within and Between Groups of Births and to Identify Left Behind Populations JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.08.16.20175711 DO 10.1101/2020.08.16.20175711 A1 Antonio P. Ramos A1 Martiniano J. Flores A1 Robert E. Weiss YR 2020 UL http://medrxiv.org/content/early/2020/09/01/2020.08.16.20175711.abstract AB Background Goal 3.2 from the Sustainable Development Goals (SDG) calls for reductions in national averages of Under-5 Mortality. However, it is well known that within countries these reductions can coexist with left behind populations that have mortality rates higher than national averages. To measure inequality in under-5 mortality and to identify left behind populations, mortality rates are often disaggregated by socioeconomic status within countries. While socioeconomic disparities are important, this approach does not quantify within group variability since births from the same socioeconomic group may have different mortality risks. This is the case because mortality risk depends on several risk factors and their interactions and births from the same socioeconomic group may have different risk factor combinations. Therefore mortality risk can be highly variable within socioeconomic groups. We develop a comprehensive approach using information from multiple risk factors simultaneously to measure inequality in mortality and to identify left behind populations.Methods We use Demographic and Health Surveys (DHS) data on 1,691,039 births from 182 different surveys from 67 low and middle income countries, 51 of which had at least two surveys. We estimate mortality risk for each child in the data using a Bayesian hierarchical logistic regression model. We include commonly used risk factors for monitoring inequality in early life mortality for the SDG as well as their interactions. We quantify variability in mortality risk within and between socioeconomic groups and describe the highest risk sub-populations.Findings For all countries there is more variability in mortality within socioeconomic groups than between them. Within countries, socioeconomic membership usually explains less than 20% of the total variation in mortality risk. In contrast, country of birth explains 19% of the total variance in mortality risk. Targeting the 20% highest risk children based on our model better identifies under-5 deaths than targeting the 20% poorest. For all surveys, we report efficiency gains from 26% in Mali to 578% in Guyana. High risk births tend to be births from mothers who are in the lowest socioeconomic group, live in rural areas and/or have already experienced a prior death of a child.Interpretation While important, differences in under-5 mortality across socioeconomic groups do not explain most of overall inequality in mortality risk because births from the same socioeconomic groups have different mortality risks. Similarly, policy makers can reach the highest risk children by targeting births based on several risk factors (socioeconomic status, residing in rural areas, having a previous death of a child and more) instead of using a single risk factor such as socioeconomic status. We suggest that researchers and policy makers monitor inequality in under-5 mortality using multiple risk factors simultaneously, quantifying inequality as a function of several risk factors to identify left behind populations in need of policy interventions and to help monitor progress toward the SDG.Competing Interest StatementThe authors have declared no competing interest.Funding StatementWe acknowledge financial support from the Eunice Kennedy Shriver National Institute Of Child Health Human Development of the National Institutes of Health under Award Number K99HD088727 and CCPR Population Research Infrastructure Grant P2C from NICHD: P2C-HD041022Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The paper does no involve human subjects.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesOnly secondary data sources were used. Data is available at https://dhsprogram.com/. Computer code is available upon request. https://dhsprogram.com/