RT Journal Article SR Electronic T1 Quantifying respiratory tract deposition of airborne graphene nanoplatelets: The impact of plate-like shape and folded structure JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.08.28.20183608 DO 10.1101/2020.08.28.20183608 A1 Hanchao Gao A1 Tobias Hammer A1 Xiaole Zhang A1 Weidong He A1 Guangbiao Xu A1 Jing Wang YR 2020 UL http://medrxiv.org/content/early/2020/09/01/2020.08.28.20183608.abstract AB The booming development of commercial products containing graphene nanoplatelets (GNPs) triggers growing concerns over their release into the air. Precise prediction of human respiratory system deposition of airborne GNPs, especially in alveolar region, is very important for inhalation exposure assessment. In this study, the pulmonary deposition of airborne GNPs was predicted by the multiple-path particle dosimetry (MPPD) model with consideration of GNPs plate-like shape and folded structure effect. Different equivalent diameters of GNPs were derived and utilized to describe different deposition mechanisms in the MPPD model. Both of small GNPs (geometric lateral size dg < 0.1 μm) and large GNPs (dg > 10 μm) had high deposition fractions in human respiratory system. The total deposition fractions for 0.1 μm and 30 μm GNPs were 41.6% and 75.6%, respectively. Most of the small GNPs deposited in the alveolar region, while the large GNPs deposited in the head airways. The aerodynamic diameter of GNPs was much smaller than the geometric lateral dimension due to the nanoscale thickness. For GNPs with geometric lateral size of 30 μm, the aerodynamic diameter was 2.98 μm. The small aerodynamic diameter of plate-like GNPs enabled deposition in the alveolar region, and folded GNPs had higher alveolar deposition than planar GNPs. Heavy breathing led to higher GNPs deposition fraction in head airways and lower deposition fractions in the alveolar region than resting breathing. Our results reveal that large GNPs can have small enough aerodynamic diameters to be respirable and deposit beyond the ciliated airways. The plate-like morphology and folded structure of GNPs resulted in higher alveolar deposition compared to spherical particles.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work is supported by Swiss National Science Foundation (grant number 310030_169207). The authors thank financial support from China Scholarship Council.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No IRB necessary.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and materials are included in this manuscript and the supplementary information file.