RT Journal Article SR Electronic T1 The importance of supplementary immunisation activities to prevent measles outbreaks during the COVID-19 pandemic in Kenya JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.08.25.20181198 DO 10.1101/2020.08.25.20181198 A1 CN Mburu A1 J Ojal A1 R Chebet A1 D Akech A1 B Karia A1 J Tuju A1 A Sigilai A1 K Abbas A1 M Jit A1 S Funk A1 G Smits A1 PGM van Gageldonk A1 FRM van der Klis A1 C Tabu A1 DJ Nokes A1 LSHTM CMMID COVID-19 Working Group A1 JAG Scott A1 S Flasche A1 IMO Adetifa YR 2020 UL http://medrxiv.org/content/early/2020/08/31/2020.08.25.20181198.abstract AB Background The COVID-19 pandemic has disrupted routine measles immunisation and supplementary immunisation activities (SIAs) in most countries including Kenya. We assessed the risk of measles outbreaks during the pandemic in Kenya as a case study for the African Region.Methods Combining measles serological data, local contact patterns, and vaccination coverage into a cohort model, we predicted the age-adjusted population immunity in Kenya and estimated the probability of outbreaks when contact-reducing COVID-19 interventions are lifted. We considered various scenarios for reduced measles vaccination coverage from April 2020.Findings In February 2020, when a scheduled SIA was postponed, population immunity was close to the herd immunity threshold and the probability of a large outbreak was 22% (0-46). As the COVID-19 restrictions to physical contact are lifted, from December 2020, the probability of a large measles outbreak increased to 31% (8-51), 35% (16-52) and 43% (31-56) assuming a 15%, 50% and 100% reduction in measles vaccination coverage. By December 2021, this risk increases further to 37% (17-54), 44% (29-57) and 57% (48-65) for the same coverage scenarios respectively. However, the increased risk of a measles outbreak following the lifting of restrictions on contact can be overcome by conducting an SIA with ≥ 95% coverage in under-fives.Interpretation While contact restrictions sufficient for SAR-CoV-2 control temporarily reduce measles transmissibility and the risk of an outbreak from a measles immunity gap, this risk rises rapidly once physical distancing is relaxed. Implementing delayed SIAs will be critical for prevention of measles outbreaks once contact restrictions are fully lifted in Kenya.Funding The United Kingdom’s Medical Research Council and the Department for International DevelopmentCompeting Interest StatementThe authors have declared no competing interest.Funding StatementThis research is funded by an MRC/DFID African Research Leader Fellowship (MR/S005293/1: IMOA, CNM, RC, and AS). IMOA and JAGS have received grants from the Gavi, the Vaccine Alliance. JA GS is funded by a Wellcome Trust Senior Research Fellowship (214320) and the NIHR Health Protection Research Unit in Immunisation. DJN is funded by the Department of International Development and Wellcome [220985/z/20/z]. We thank Dr. Laura Hammitt, Ms. Angela Karani, the residents of the Kilifi Health and Demographic Surveillance System and the dedicated team of fieldworkers, administrative staff, clinicians, and laboratory staff who worked on this study. This report is published with the permission of the Director of the Kenya Medical Research Institute This research was partly funded by the Bill & Melinda Gates Foundation (INV-003174: MJ). BMGF (OPP1157270: KA). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: MJ). This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (16/137/109: MJ; NIHR200929: MJ; NIHR Global Health Research Unit on Mucosal Pathogens: JO). Wellcome Trust (208812/Z/17/Z: SFlasche; 210758/Z/18/Z: SFunk). The following funding sources are acknowledged as providing funding for the working group authors. Alan Turing Institute (AE). BBSRC LIDP (BB/M009513/1: DS). This research was partly funded by the Bill & Melinda Gates Foundation (INV-001754: MQ; INV-003174: KP, YL; NTD Modelling Consortium OPP1184344: CABP, GFM; OPP1180644: SRP; OPP1183986: ESN; OPP1191821: KO'R, MA). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP, KvZ). DTRA (HDTRA1-18-1-0051: JWR). Elrha R2HC/UK DFID/Wellcome Trust/This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (KvZ). ERC Starting Grant (#757699: JCE, MQ, RMGJH). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: KP, PK, RCB, WJE, YL). This research was partly funded by the Global Challenges Research Fund (GCRF) project 'RECAP' managed through RCUK and ESRC (ES/P010873/1: AG, CIJ, TJ). HDR UK (MR/S003975/1: RME). Nakajima Foundation (AE). NIHR (16/136/46: BJQ; 16/137/109: BJQ, CD, FYS, YL; Health Protection Research Unit for Immunisation NIHR200929: NGD; Health Protection Research Unit for Modelling Methodology HPRU-2012-10096: TJ; PR-OD-1017-20002: AR, WJE). Royal Society (Dorothy Hodgkin Fellowship: RL; RP\EA\180004: PK). UK DHSC/UK Aid/NIHR (ITCRZ 03010: HPG). UK MRC (LID DTP MR/N013638/1: GRGL, QJL; MC_PC_19065: AG, NGD, RME, SC, TJ, WJE, YL; MR/P014658/1: GMK). Authors of this research receive funding from UK Public Health Rapid Support Team funded by the United Kingdom Department of Health and Social Care (TJ). Wellcome Trust (206250/Z/17/Z: AJK, TWR; 206471/Z/17/Z: OJB; 208812/Z/17/Z: SC; 210758/Z/18/Z: JDM, JH, KS, NIB, SA, SRM). No funding (AKD, AMF, CJVA, DCT, KEA, SH, YWDC). Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This project was approved by the Scientific and Ethics Review Unit of the Kenya Medical Research Institute (KEMRI) under protocol SSC 3847All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll analyses were done in R and the code is available on github at https://github.com/CarolineNM/ncov_measles_Kenya The replication data and analysis scripts for this manuscript shall be made available at the KWTRP Harvard Dataverse: (https://dataverse.harvard.edu/dataverse/kwtrp). The measles serology data is part of an ongoing study and is stored under restricted access. Requests for access to the restricted dataset should be made to the Data Governance Committee (dgc@kemri-wellcome.org) of the KEMRI-Wellcome Trust Research Programme.