RT Journal Article SR Electronic T1 Within-Frequency Temporal Processing and Speech Perception in Cochlear Implant Recipients and Normal Hearing Listeners JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.07.21.20159137 DO 10.1101/2020.07.21.20159137 A1 Chelsea M. Blankenship A1 Jareen Meinzen-Derr A1 Fawen Zhang YR 2020 UL http://medrxiv.org/content/early/2020/07/25/2020.07.21.20159137.abstract AB Objective Speech recognition performance among cochlear implant (CI) recipients is highly variable and is influenced by their ability to perceive rapid changes within the acoustic signal (i.e., temporal resolution). A behavioral gap detection test is commonly used to assess temporal processing however it requires active participation, and therefore may be infeasible for young children and individuals with disabilities. Alternatively, cortical auditory evoked potentials (CAEPs) can be elicited by a silent gap embedded in a longer duration stimulus and have been used as an objective measure of temporal resolution. Only a few studies have examined within-frequency gap detection (identical pre- and post-gap frequency), most of which were conducted with normal hearing (NH) individuals and did not include speech perception. The purpose of the study is to evaluate behavioral and electrophysiological measures of within-frequency temporal processing and speech perception in NH and CI recipients.Design Eleven post-lingually deafened adult CI recipients (n = 15 ears; mean age = 50.4 yrs.) and eleven age- and gender-matched NH individuals (n = 15 ears; mean age = 49.0 yrs.) were recruited. Speech perception was assessed with the CNC word test, AzBio sentence test, and BKB Speech-in-Noise test. Within-frequency (2 kHz pre- and post-gap tone) behavioral gap detection thresholds (GDT) were measured using an adaptive, two-alternative, forced-choice paradigm. Within-frequency CAEPs were measured using four gap duration conditions based on the individual’s behavioral GDT including a supra-threshold (GDTx3), threshold (GDT), sub-threshold (GDT/3), and reference (no gap) condition. Mixed effect models examined group differences in speech perception, behavioral GDTs, and CAEP amplitude and latency. Correlation analyses examined the relationship between the CAEP response, behavioral measures of speech perception and temporal processing, and demographic factors.Results CI recipients had significantly poorer speech perception scores with no significant differences in behavioral within-frequency GDTs compared to NH participants. CI recipients had poorer CAEP waveform morphology, smaller N1, larger P2 amplitude, and increased P1 latency compared to NH participants. Additionally, older participants displayed smaller N1-P2 amplitude compared to younger participants. Bivariate group correlation analysis showed that individuals with poorer within-frequency GDTs displayed significantly poorer performance on the AzBio sentences in noise and BKB Speech-in-Noise test. Multivariate canonical correlation analysis showed a significant relationship between the within-frequency CAEP amplitude and latency and behavioral measures of speech perception and temporal processing.Conclusions CI recipients had poorer speech understanding in quiet and noise yet similar behavioral GDTs compared to NH participants. NH participants showed the anticipated trend of increased N1-P2 amplitude as CAEP gap duration increased. However, CAEP amplitude and latency remained relatively stable across gap duration conditions for CI recipients. Instead, significant group and age effects for CAEP peak amplitude and latency were found that can likely be attributed to differences in cortical neuron density, adaptation, and recovery between the groups. Lastly correlation analysis indicates that individuals with poorer temporal processing are likely to have adequate speech perception in quiet but worse speech understanding in noise.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research was supported by the National Institute Health, National Institute on Deafness and Other Communication Disorders Grant R15 DC011004 (Fawen Zhang) and the University of Cincinnati University Research Council (Chelsea Blankenship).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The research study was approved by the Institutional Review Board of the University of Cincinnati. Informed consent was obtained from all participants and they were paid for participation.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data can be made available upon request.AzBioArizona Biomedical Sentence TestBKB-SINBamford-Kowal-Bench Speech-in-Noise TestCAEPCortical Auditory Evoked PotentialCICochlear ImplantCNCConsonant-Nucleus-Consonant Word TestEEGElectroencephalographicGDTGap Detection ThresholdICAIndependent Component AnalysisMCLMost Comfortable LevelNHNormal HearingSLSensation LevelSNRSignal-to-Noise Ratio