PT - JOURNAL ARTICLE AU - Arif Masrur AU - Manzhu Yu AU - Wei Luo AU - Ashraf Dewan TI - Space-time patterns, change, and propagation of COVID-19 risk relative to the intervention scenarios in Bangladesh AID - 10.1101/2020.07.15.20154757 DP - 2020 Jan 01 TA - medRxiv PG - 2020.07.15.20154757 4099 - http://medrxiv.org/content/early/2020/07/16/2020.07.15.20154757.short 4100 - http://medrxiv.org/content/early/2020/07/16/2020.07.15.20154757.full AB - The novel coronavirus (COVID-19) pandemic continues to be a significant public health threat worldwide. As of mid-June 2020, COVID-19 has spread worldwide with more than 7.7 million confirmed cases and more than 400,000 deaths. The impacts are substantial particularly in developing and densely populated countries like Bangladesh with inadequate health care facilities, where COVID-19 cases are currently surging. While early detection and isolation were identified as important non-pharmaceutical intervention (NPI) measures for containing the disease spread, this may not be pragmatically implementable in developing countries primarily due to social and economic reasons (i.e. poor education, less public awareness, massive unemployment). To shed light on COVID-19 transmission dynamics and impacts of NPI scenarios – e.g. social distancing, this study conducted emerging pattern analysis using the space-time scan statistic at district and thana (i.e. a sub-district or ‘upazila’ with at least one police station) levels in Bangladesh and its capital – Dhaka city, respectively. We found that the central and south eastern regions in Bangladesh are currently exhibiting a high risk of COVID-19 transmission. Dhaka megacity remains as the highest risk “active” cluster since early April. The space-time progression of COVID-19 infection, when validated against the chronicle of government press releases and newspaper reports, suggests that Bangladesh have experienced a community level transmission at the early phase (i.e., March, 2020) primarily introduced by Bangladeshi citizens returning from coronavirus-affected countries in the Europe and the Middle East. A linkage is evident between the violation of NPIs and post-incubation period emergence of new clusters with elevated exposure risk around Bangladesh. This study provides novel insights into the space-time patterns of COVID-19 transmission dynamics and recommends pragmatic NPI implementation for reducing disease transmission and minimizing impacts in a resource-scarce country with Bangladesh as a case-study example.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research did not receive any funding grant from the public, commercial, or not-for-profit agencies.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This research does not include human subjects.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData sharing is not applicable to this article as no new data were created or analyzed in this study.