TY - JOUR T1 - CHEST DRAIN AEROSOL GENERATION IN COVID-19 AND EMISSION REDUCTION USING A SIMPLE ANTI-VIRAL FILTER JF - medRxiv DO - 10.1101/2020.07.13.20152264 SP - 2020.07.13.20152264 AU - Clodagh Duffy AU - Andrew C. Kidd AU - Sarah Francis AU - Selina Tsim AU - Laura McNaughton AU - Katie Ferguson AU - Jenny Ferguson AU - Gary Rodgers AU - Claire McGroarty AU - Robin Sayer AU - Kevin G. Blyth Y1 - 2020/01/01 UR - http://medrxiv.org/content/early/2020/07/15/2020.07.13.20152264.abstract N2 - Introduction The COVID-19 pandemic has been characterised by significant in-hospital virus transmission and deaths among healthcare workers. Sources of in-hospital transmission are not fully understood, with special precautions currently reserved for procedures previously shown to generate aerosols (particles <5 microns). Pleural procedures are not currently considered AGPs, reflecting a lack of data in this area.Methods An underwater seal chest drain bottle (R54500, Rocket Medical UK) was set up inside a 60-litre plastic box and connected via an airtight conduit to a medical air supply. A multichannel particle counter (TSI Aerotrak 9310 Aerosol Monitor) was placed inside the box, allowing measurement of particle count/cubic foot (pc/ft3) within six channel sizes: 0.3-0.5, 0.5-1, 1-3, 3-5, 5-10 and >10 microns. Stabilised particle counts at 1, 3 and 5 L/min were compared by Wilcoxon signed rank test; p-values were Bonferroni-adjusted. Measurements were repeated with a simple anti-viral filter, designed using repurposed materials by the study team, attached to the drain bottle. The pressure within the bottle was measured to assess any effect of the filter on bottle function.Results Aerosol emissions increased with increasing air flow, with the largest increase observed in smaller particles (0.3-3 microns). Concentration of the smallest particles (0.3-0.5 microns) increased from background levels by 700, 1400 and 2500 pc/ft3 at 1, 3 and 5 L/min, respectively. However, dispersion of particles of all sizes was effectively prevented by use of the viral filter at all flow rates. Use of the filter was associated with a maximum pressure rise of 0.3 cm H2O after 24hours of flow at 5 L/min, suggesting minimal impact on drain function.Conclusion A bubbling chest drain is a source of aerosolised particles, but emission can be prevented using a simple anti-viral filter. These data should be considered when designing measures to reduce in-hospital spread of SARS-CoV-2.Competing Interest StatementKGB has received research funding from Rocket Medical UK Ltd for other studies. All other authors have no competing interests to declare.Funding StatementNo funding.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No ethical approval was required since the study did not involve patients or biological materials.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data is available upon reasonable request to the corresponding author. ER -