RT Journal Article SR Electronic T1 Discriminating cognitive performance using biomarkers extracted from linear and nonlinear analysis of EEG signals by machine learning JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.06.30.20143610 DO 10.1101/2020.06.30.20143610 A1 Shivabalan, K R A1 Brototo, Deb A1 Shivam, Goel A1 Sivanesan, S YR 2020 UL http://medrxiv.org/content/early/2020/07/02/2020.06.30.20143610.abstract AB Nonlinear dynamics and chaos theory are being widely used nowadays in neuroscience to characterize complex systems within which the change of the output isn’t proportional to the change of the input. Nonlinear systems compared to linear systems, often appear chaotic, unpredictable, or counterintuitive, and yet their behaviour isn’t random. The importance of the time series analysis, which exhibits a typical complex dynamics, within the area of nonlinear analysis can’t be undermined. Hidden important dynamical properties of the physiological phenomenon can be detected by many features of these approaches. Nonlinear dynamics and chaos theory are being employed in neurophysiology with the aim to elucidate the complex brain activity from electroencephalographic (EEG) signals. The brain is a chaotic dynamical system and further, their generated EEG signals are generally chaotic in another sense, because, with respect to time, the amplitude changes continuously. A reliable and non-invasive measurement of memory load which will be made continuously while performing a cognitive task would be very helpful for assessing cognitive function, crucial for the prevention of decision-making errors, and also the development of adaptive user interfaces. Such a measurement could help to keep up the efficiency and productivity in task completion, work performance, and to avoid cognitive overload, especially in critical/high mental load workplaces like traffic control, military operations, and rescue commands. We have measured the linear and nonlinear dynamics of the EEG signals in subjects undergoing mental arithmetic task and measured the cognitive load on the brain continuously. We have also differentiated the subjects who can perform a mental task good and bad and developed a system using support vector machine to differentiate rest and task states.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was received.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The study was approved by the Bioethics Commission of Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National University of KyivAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesTe datasets analysed during the current study are available from the corresponding author on reasonable request.