TY - JOUR T1 - Spatial scales in human movement between reservoirs of infection JF - medRxiv DO - 10.1101/2020.04.17.20069047 SP - 2020.04.17.20069047 AU - Robert J. Hardwick AU - Carolin Vegvari AU - Benjamin Collyer AU - James E. Truscott AU - Roy M. Anderson Y1 - 2020/01/01 UR - http://medrxiv.org/content/early/2020/06/27/2020.04.17.20069047.abstract N2 - The life cycle of parasitic organisms that are the cause of much morbidity in humans often depend on reservoirs of infection for transmission into their hosts. Understanding the daily, monthly and yearly movement patterns of individuals between reservoirs is therefore of great importance to implementers of control policies seeking to eliminate various parasitic diseases as a public health problem. This is due to the fact that the underlying spatial extent of the reservoir of infection, which drives transmission, can be strongly affected by inputs from undefined external sources. In order to study the importance of these effects, we build and examine a novel theoretical model of human movement between spatially defined reservoirs of infection. Using our model we demonstrate the potential for the reservoir of infection to vary in spatial extent and temporal stability — effects which can both strongly influence the local transmission dynamics and response to control measures, e.g., mass drug administration (MDA). Considering the helminth parasites as our main example, by varying the spatial scale at which locations are defined, we demonstrate that a critical scale exists for an evaluation unit at which the migration rate into the associated reservoir of infection can be neglected for practical purposes. This scale varies by species and geographic region. Our model is designed to be applicable to a very general pattern of infectious disease spread induced by the migration of infected individuals between clustered communities. For example, it may be readily adapted to study the spatial structure of hosts for macroparasites such as the soil-transmitted helminths, schistosomes and filarial worms.Competing Interest StatementThe authors have declared no competing interest.Funding StatementRJH, JET and RMA gratefully thank the Bill and Melinda Gates Foundation for research grant support via the DeWorm3 (OPP1129535) award to the Natural History Museum in London (http://www.gatesfoundation.org/). CV gratefully acknowledges funding from the NTD Modelling Consortium (OPP1184344) by the Bill and Melinda Gates Foundation in partnership with the Task Force for Global Health (http://www.taskforce.org/). The views, opinions, assumptions or any other information set out in this article are solely those of the authors. All authors acknowledge joint Centre funding from the UK Medical Research Council and Department for International Development.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesOpen-source data on building locations are from the high resolution settlement layer dataset generated by the Facebook Connectivity Lab. https://www.ciesin.columbia.edu/data/hrsl/ ER -