RT Journal Article SR Electronic T1 A flexible method for optimising sharing of healthcare resources and demand in the context of the COVID-19 pandemic JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.03.31.20049239 DO 10.1101/2020.03.31.20049239 A1 Lacasa, Lucas A1 Challen, Robert A1 Brooks-Pollock, Ellen A1 Danon, Leon YR 2020 UL http://medrxiv.org/content/early/2020/06/07/2020.03.31.20049239.abstract AB As the number of cases of COVID-19 continues to grow, local health services are at risk of being overwhelmed with patients requiring intensive care. We develop and implement an algorithm to provide optimal re-routing strategies to either transfer patients requiring Intensive Care Units (ICU) or ventilators, constrained by feasibility of transfer. We validate our approach with realistic data from the United Kingdom and Spain. In the UK, we consider the National Health Service at the level of trusts and define a 4-regular geometric graph which indicates the four nearest neighbours of any given trust. In Spain we coarse-grain the healthcare system at the level of autonomous communities, and extract similar contact networks. Through random search optimisation we identify the best load sharing strategy, where the cost function to minimise is based on the total number of ICU units above capacity. Our framework is general and flexible allowing for additional criteria, alternative cost functions, and can be extended to other resources beyond ICU units or ventilators. Assuming a uniform ICU demand, we show that it is possible to enable access to ICU for up to 1000 additional cases in the UK in a single step of the algorithm. Under a more realistic and heterogeneous demand, our method is able to balance about 600 beds per step in the Spanish system only using local sharing, and over 1300 using countrywide sharing, potentially saving a large percentage of these lives that would otherwise not have access to ICU.Competing Interest StatementThe authors have declared no competing interest.Funding StatementLL gratefully acknowledges the financial support of the EPSRC via Early Career Fellowship EP/P01660X/1. RCh gratefully acknowledges the financial support of the EPSRC via grant EP/N014391/1 and NHS England, Global Digital Exemplar programme. LD gratefully acknowledges the financial support of The Alan Turing Institute under the EPSRC grant EP/N510129/1.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesCodes and data are available at https://github.com/lucaslacasa/loadsharing https://github.com/lucaslacasa/loadsharing