RT Journal Article SR Electronic T1 Identifying the measurements required to estimate rates of COVID-19 transmission, infection, and detection, using variational data assimilation JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.05.27.20112987 DO 10.1101/2020.05.27.20112987 A1 Eve Armstrong A1 Manuela Runge A1 Jaline Gerardin YR 2020 UL http://medrxiv.org/content/early/2020/05/29/2020.05.27.20112987.abstract AB We demonstrate the ability of statistical data assimilation to identify the measurements required for accurate state and parameter estimation in an epidemiological model for the novel coronavirus disease COVID-19. Our context is an effort to inform policy regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are taken to be: the time-varying transmission rate, the fraction of exposed cases that require hospitalization, and the time-varying detection probabilities of new asymptomatic and symptomatic cases. In simulations, we obtain accurate estimates of undetected (that is, unmeasured) infectious populations, by measuring the detected cases together with the recovered and dead - and without assumed knowledge of the detection rates. These state estimates require a measurement of the recovered population, and are tolerant to low errors in that measurement. Further, excellent estimates of all quantities are obtained using a temporal baseline of 112 days, with the exception of the time-varying transmission rate at times prior to the implementation of social distancing. The estimation of this transmission rate is sensitive to contamination in the data, highlighting the need for accurate and uniform methods of reporting. Finally, we employ the procedure using real data from Italy reported by Johns Hopkins. The aim of this paper is not to assign extreme significance to the results of these specific experiments per se. Rather, we intend to exemplify the power of SDA to determine what properties of measurements will yield estimates of unknown model parameters to a desired precision - all set within the complex context of the COVID-19 pandemic.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was received.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No IRB oversight was necessary. This paper involves simulations, no real data.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll code and simulations will be made available via a github link. We generated no real data; only simulations.