PT - JOURNAL ARTICLE AU - Hsiang, Solomon AU - Allen, Daniel AU - Annan-Phan, Sébastien AU - Bell, Kendon AU - Bolliger, Ian AU - Chong, Trinetta AU - Druckenmiller, Hannah AU - Huang, Luna Yue AU - Hultgren, Andrew AU - Krasovich, Emma AU - Lau, Peiley AU - Lee, Jaecheol AU - Rolf, Esther AU - Tseng, Jeanette AU - Wu, Tiffany TI - The Effect of Large-Scale Anti-Contagion Policies on the COVID-19 Pandemic AID - 10.1101/2020.03.22.20040642 DP - 2020 Jan 01 TA - medRxiv PG - 2020.03.22.20040642 4099 - http://medrxiv.org/content/early/2020/05/21/2020.03.22.20040642.short 4100 - http://medrxiv.org/content/early/2020/05/21/2020.03.22.20040642.full AB - Governments around the world are responding to the novel coronavirus (COVID-19) pandemic1 with unprecedented policies designed to slow the growth rate of infections. Many actions, such as closing schools and restricting populations to their homes, impose large and visible costs on society, but their benefits cannot be directly observed and are currently understood only through process-based simulations.2–4 Here, we compile new data on 1,717 local, regional, and national non-pharmaceutical interventions deployed in the ongoing pandemic across localities in China, South Korea, Italy, Iran, France, and the United States (US). We then apply reduced-form econometric methods, commonly used to measure the effect of policies on economic growth, 5,6 to empirically evaluate the effect that these anti-contagion policies have had on the growth rate of infections. In the absence of policy actions, we estimate that early infections of COVID-19 exhibit exponential growth rates of roughly 38% per day. We find that anti-contagion policies have significantly and substantially slowed this growth. Some policies have different impacts on different populations, but we obtain consistent evidence that the policy packages now deployed are achieving large, beneficial, and measurable health outcomes. We estimate that across these six countries, interventions prevented or delayed on the order of 62 million confirmed cases, corresponding to averting roughly 530 million total infections. These findings may help inform whether or when these policies should be deployed, intensified, or lifted, and they can support decision-making in the other 180+ countries where COVID-19 has been reported.7Competing Interest StatementThe authors have declared no competing interest.Funding StatementSAP, EK, PL, JT are supported by a gift from the Tuaropaki Trust. TC is supported by an AI for Earth grant from National Geographic and Microsoft. DA, AH, IB are supported through joint collaborations with the Climate Impact Lab. KB is supported by the Royal Society Te Aparangi Rutherford Postdoctoral Fellowship (New Zealand). HD and ER are supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1106400 and 1752814, respectively. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of supporting organizations. The authors declare no conflicts of interest.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and code used in this analysis are available at https://github.com/bolliger32/gpl-covid. Updates are posted at http://www.globalpolicy.science/covid19.