RT Journal Article SR Electronic T1 Particle Based Model for Airborne Disease Transmission JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.04.23.20076273 DO 10.1101/2020.04.23.20076273 A1 Michael B Dillon A1 Charles F Dillon YR 2020 UL http://medrxiv.org/content/early/2020/04/28/2020.04.23.20076273.abstract AB Prior literature documents cases of airborne infectious disease transmission at distances ranging from ≥ 2 m to inter-continental in scale. Physics- and biology- based models describe the key aspects of these airborne disease transmission events, but important gaps remain. This report extends current approaches by developing a new, single-particle based theory that (a) assesses the likelihood of rare airborne infections (where individuals inhale either one or no infectious particles) and (b) explicitly accounts for the variability in airborne exposures and population susceptibilities within a geographic region of interest. For these hazards, airborne particle fate and transport is independent of particulate concentration, and so results for complex releases can be determined from the results of many single-particle releases.This work is intended to provide context for both (a) the initial stages of a disease outbreak and (b) larger scale (≥ 2 m) disease spread, including distant disease “sparks” (low probability, unexpected disease transmission events that infect remote, susceptible populations). The physics of airborne particulate dispersion inherently constrains airborne disease transmission. As such, this work suggests results that, a priori, may be applicable to many airborne diseases.Model PredictionsModeling predictions of the single-particle transmission kernel suggest that outdoor airborne disease transmission events may occur episodically as the infection probabilities can vary over many orders of magnitude depending on the distance downwind; specific virus, prion, or microorganism; and meteorological conditions.Model results suggest that, under the right conditions, an indoor infected person could spread disease to a similar, or greater, number of people downwind than in the building they occupy. However, the downwind, per-person infection probability is predicted to be lower than the within-building, per-person infection probability. This finding is limited to airborne transmission considerations.This work suggests a new relative disease probability metric for airborne transmitted diseases. This metric, which is distinct from the traditional relative risk metric, is applicable when the rate at which the infectious agent losses infectivity in the atmosphere is ≲ 1 h-1.Competing Interest StatementMBD was supported, in part, by the US Department of Homeland Security. Outside the scope of this work, MBD collaborates with the University of Texas Medical Branch.Funding StatementThis work was supported, in part, by the US Department of Homeland Security.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData provided in supplemental materials.