PT - JOURNAL ARTICLE AU - Bédard, Sandrine AU - Valošek, Jan AU - Seif, Maryam AU - Curt, Armin AU - Schading, Simon AU - Pfender, Nikolai AU - Freund, Patrick AU - Hupp, Markus AU - Cohen-Adad, Julien TI - Normalizing Spinal Cord Compression Morphometric Measures: Application in Degenerative Cervical Myelopathy AID - 10.1101/2024.03.13.24304177 DP - 2024 Jan 01 TA - medRxiv PG - 2024.03.13.24304177 4099 - http://medrxiv.org/content/early/2024/03/15/2024.03.13.24304177.short 4100 - http://medrxiv.org/content/early/2024/03/15/2024.03.13.24304177.full AB - Objective Automatic and robust characterization of spinal cord shape from MRI images is relevant to assess the severity of spinal cord compression in degenerative cervical myelopathy (DCM) and to guide therapeutic strategy. Despite its popularity, the maximum spinal cord compression (MSCC) index has practical limitations to objectively assess the severity of cord compression. Firstly, it is computed by normalizing the anteroposterior cord diameter by that above and below the level of compression, but it does not account for the fact that the spinal cord itself varies in size along the superior-inferior axis, making this MSCC sensitive to the level of compression. Secondly, spinal cord shape varies across individuals, making MSCC also sensitive to the size and shape of every individual. Thirdly, MSCC is typically computed by the expert-rater on a single sagittal slice, which is time-consuming and prone to inter-rater variability. In this study, we propose a fully automatic pipeline to compute MSCC.Methods We extended the traditional MSCC (based on the anteroposterior diameter) to other shape metrics (transverse diameter, area, eccentricity, and solidity), and proposed a normalization strategy using a database of healthy adults (n=203) to address the variability of the spinal cord anatomy between individuals. We validated the proposed method in a cohort of DCM patients (n=120) with manually derived morphometric measures and predicted the therapeutic decision (operative/conservative) using a stepwise binary logistic regression including demographics, clinical scores, and electrophysiological assessment.Results The automatic and normalized MSCC measures significantly correlated with clinical scores and predicted the therapeutic decision with higher accuracy than the manual MSCC. Results show that the sensory dysfunction of the upper extremities (mJOA subscore), the presence of myelopathy and the proposed MRI-based normalized morphometric measures were significant predictors of the therapeutic decision. The model yielded an area under the curve of the receiver operating characteristic of 80%.Conclusion The study introduced an automatic method for computation of normalized MSCC measures of cord compression from MRI scans, which is an important step towards better informed therapeutic decisions in DCM patients. The method is open-source and available in the Spinal Cord Toolbox v6.0.Competing Interest StatementThe authors have declared no competing interest.Funding StatementFunded by the Canada Research Chair in Quantitative Magnetic Resonance Imaging [CRC-2020-00179], the Canadian Institute of Health Research [PJT-190258], the Canada Foundation for Innovation [32454, 34824], the Fonds de Recherche du Quebec – Sante [322736, 324636], the Natural Sciences and Engineering Research Council of Canada [RGPIN-2019-07244], the Canada First Research Excellence Fund (IVADO and TransMedTech), the Courtois NeuroMod project, the Quebec BioImaging Network [5886, 35450], INSPIRED (Spinal Research, UK; Wings for Life, Austria; Craig H. Neilsen Foundation, USA), Mila – Tech Transfer Funding Program. Supported by the Ministry of Health of the Czech Republic, grant nr. NU22-04-00024. All rights reserved. This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101107932. MRI measurements were funded by Balgrist Foundation, Zurich, Switzerland.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Ethics committee of Kantonale Ethikkommission Zurich gave ethical approval for this work.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data produced in the present study are available upon reasonable request to the authors.