TY - JOUR T1 - Isolation and contact tracing can tip the scale to containment of COVID-19 in populations with social distancing JF - medRxiv DO - 10.1101/2020.03.10.20033738 SP - 2020.03.10.20033738 AU - Mirjam E. Kretzschmar AU - Ganna Rozhnova AU - Michiel van Boven Y1 - 2020/01/01 UR - http://medrxiv.org/content/early/2020/04/16/2020.03.10.20033738.abstract N2 - Background Novel coronavirus (SARS-CoV-2) has extended its range of transmission in all parts of the world, with substantial variation in rates of transmission and severity of associated disease. Many countries have implemented social distancing as a measure to control further spread.Methods We evaluate whether and under which conditions containment or slowing down COVID-19 epidemics are possible by isolation and contact tracing in settings with various levels of social distancing. We use a stochastic transmission model in which every person generates novel infections according to a probability distribution that is affected by the incubation period distribution (time from infection to symptoms), distribution of the latent period (time from infection to onset of infectiousness), and overall transmissibility. The model distinguishes between close contacts (e.g., within a household) and other contacts in the population. Social distancing affects the number of contacts outside but not within the household.Findings The proportion of asymptomatic or unascertained cases has a strong impact on the controllability of the disease. If the proportion of asymptomatic infections is larger than 30%, contact tracing and isolation cannot achieve containment for an R0 of 2.5. Achieving containment by social distancing requires a reduction of numbers of non-household contacts by around 90%. Depending on the realized level of contact reduction, tracing and isolation of only household contacts, or of household and non-household contacts are necessary to reduce the effective reproduction number to below 1. A combination of social distancing with isolation and contact tracing leads to synergistic effects that increase the prospect of containment.Interpretation Isolation and contact tracing can be an effective means to slow down epidemics, but only if the majority of cases are ascertained. In a situation with social distancing, contact tracing can act synergistically and tip the scale towards containment, and can therefore be a tool for controlling COVID-19 epidemics as part of an exit strategy from current lockdown measures.Funding This research was partly funded by ZonMw project number 91216062.Evidence before this study As of 8 April 2020, the novel coronavirus (SARS-CoV-2) has spread to more than 170 countries and has caused near 90,000 deaths of COVID-19 worldwide. In the absence of effective medicines and vaccines, the preventive measures are limited to social distancing, isolation of confirmed and suspected cases, and identification and quarantining of their contacts. Evidence suggests that a substantial portion of transmission may occur before the onset of symptoms and before cases can be isolated, and that many cases remain unascertained. This has potentially important implications for the prospect of containment by combinations of these measures.Added value of this study Using a stochastic transmission model armed with current best estimates of epidemiological parameters, we evaluated under which conditions containment could be achieved with combinations of social distancing, isolation and contact tracing. We investigated the level of social distancing needed for containment, and how an additional implementation of isolation and contact tracing may likely help to in reducing the effective reproduction number to below 1, the critical threshold. We analyzed what proportion of household and non-household contacts need to be isolated effectively to achieve containment depending on the level of social distancing in the population. We estimated the impact of combinations of these measures on epidemic growth rate and doubling time for the number of infections. We find that under realistic assumptions on the level of social distancing, additional isolation and contact tracing are needed for stopping the epidemic. Whether quarantining only household contacts is sufficient, depends on levels of social distancing and timeliness of tracing and isolation.Implications of all the available evidence Our analyses based on best understanding of the epidemiology of COVID-19, highlight that if social distancing is not complete, isolation and contact tracing at least of household contacts can help to delay and lower the epidemic peak. High levels of timely contact tracing of household and non-household contacts may be sufficient to control the epidemic.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research was partly funded by ZonMw project number 91216062.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesWe only used data from published literature. ER -