RT Journal Article SR Electronic T1 The first three months of the COVID-19 epidemic: Epidemiological evidence for two separate strains of SARS-CoV-2 viruses spreading and implications for prevention strategies JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.03.28.20036715 DO 10.1101/2020.03.28.20036715 A1 Wittkowski, Knut M. YR 2020 UL http://medrxiv.org/content/early/2020/04/07/2020.03.28.20036715.abstract AB About one month after the COVID-19 epidemic peaked in Mainland China and SARS-CoV-2 migrated to Europe and then the U.S., the epidemiological data begin to provide important insights into the risks associated with the disease and the effectiveness of intervention strategies such as travel restrictions and social distancing. Respiratory diseases, including the 2003 SARS epidemic, remain only about two months in any given population, although peak incidence and lethality can vary. The epidemiological data suggest that at least two strains of the 2020 SARS-CoV-2 virus have evolved during its migration from Mainland China to Europe. South Korea, Iran, Italy, and Italy’s neighbors were hit by the more dangerous “SKII” variant. While the epidemic in continental Asia is about to end, and in Europe about to level off, the more recent epidemic in the younger US population is still increasing, albeit not exponentially anymore. The peak level will likely depend on which of the strains has entered the U.S. first. The same models that help us to understand the epidemic also help us to choose prevention strategies. Containment of high-risk people, like the elderly, and reducing disease severity, either by vaccination or by early treatment of complications, is the best strategy against a respiratory virus disease. Social distancing or “lockdowns” can be effective during the month following the peak incidence in infections, when the exponential increase of cases ends. Earlier containment of low-risk people merely prolongs the time the virus needs to circulate until the incidence is high enough to initiate “herd immunity”. Later containment is not helpful, unless to prevent a rebound if containment started too early.About the Author Dr. Wittkowski received his PhD in computer science from the University of Stuttgart and his ScD (Habilitation) in Medical Biometry from the Eberhard-Karls-University Tübingen, both Germany. He worked for 15 years with Klaus Dietz, a leading epidemiologist who coined the term “reproduction number”, on the Epidemiology of HIV before heading for 20 years the Department of Biostatistics, Epidemiology, and Research Design at The Rockefeller University, New York. Dr. Wittkowski is currently the CEO of ASDERA LLC, a company discovering novel treatments for complex diseases from data of genome-wide association studies.Competing Interest StatementThe authors have declared no competing interest.Funding StatementnoneAuthor DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data is publicly available http://ecdc.europa.eu