PT - JOURNAL ARTICLE AU - von Cube, Maja AU - Grodd, Marlon AU - Wolkewitz, Martin AU - Hazard, Derek AU - Lambert, Jerome TI - Harmonizing heterogeneous endpoints in COVID-19 trials without loss of information –an essential step to facilitate decision making AID - 10.1101/2020.03.31.20049007 DP - 2020 Jan 01 TA - medRxiv PG - 2020.03.31.20049007 4099 - http://medrxiv.org/content/early/2020/04/03/2020.03.31.20049007.short 4100 - http://medrxiv.org/content/early/2020/04/03/2020.03.31.20049007.full AB - Background Many trials are now underway to inform decision-makers on potential effects of treatments for COVID-19. To provide sufficient information for all involved decision-makers (clinicians, public health authorities, drug regulatory agencies) a multiplicity of endpoints must be considered. It is a challenge to generate detailed high quality evidence from data while ensuring fast availability and evaluation of the results.Methods We reviewed all interventional COVID-19 trials on Remdesivir, Lopinavir/ritonavir and Hydroxychloroquine registered in the National Library of Medicine (NLM) at the National Institutes of Health (NIH) and summarized the endpoints used to assess treatment effects. We propose a multistate model that harmonizes heterogeneous endpoints and differing lengths of follow-up within and between trials.Results There are currently, March 27, 2020, 23 registered interventional trials investigating the potential benefits of Remdesivir, Lopinavir/ritonavir and Hydroxychloroquine. The endpoints are highly heterogeneous. Follow-up for the primary endpoints ranges from four to 168 days.A detailed precisely defined endpoint has been proposed by the global network REMAP-CAP, which is specialized on community-acquired pneumonia. Their seven-category endpoint accounts for major clinical events informative for all decision-makers. Moreover, the Core Outcome Measures in Effectiveness Trials (COMET) Initiative is currently working on a core outcome set. We propose a multistate model that accommodates analysis of these recommended endpoints. The model allows for a detailed investigation of treatment effects for various endpoints over the course of time thereby harmonizing differing endpoints and lengths of follow-up.Conclusion Multistate model analysis is a powerful tool to study clinically heterogeneous endpoints (mortality, discharge) as well as endpoints influencing hospital capacities (duration of hospitalization and ventilation) simultaneously over time. Our proposed model extracts all information available in the data and is - by harmonizing endpoints within and between trials - a step towards faster decision making. All ongoing clinical trials, especially those with severe cases, should accommodate primary analysis with a stacked probability plot of the major events mechanical ventilation, discharge alive and death.Competing Interest StatementThe authors have declared no competing interest.Funding StatementMvC has been funded by the EQUIP Medical Scientists Programme of the University of Freiburg.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.Yesnot applicable