PT - JOURNAL ARTICLE AU - Oliveiros, B AU - Caramelo, L AU - Ferreira, N C AU - Caramelo, F TI - Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases AID - 10.1101/2020.03.05.20031872 DP - 2020 Jan 01 TA - medRxiv PG - 2020.03.05.20031872 4099 - http://medrxiv.org/content/early/2020/03/08/2020.03.05.20031872.short 4100 - http://medrxiv.org/content/early/2020/03/08/2020.03.05.20031872.full AB - COVID-19 is having a great impact on public health, mortality and economy worldwide, in spite of the efforts to prevent its epidemy. The SARS-CoV-2 genome is different from that of MERS-CoV and SARS-CoV, although also expected to spread differently according to meteorological conditions. Our main goal is to investigate the role of some meteorological variables on the expansion of this outbreak.In this study, an exponential model relating the number of accumulated confirmed cases and time was considered. The rate of COVID-19 spread, using as criterion the doubling time of the number of confirmed cases, was used as dependent variable in a linear model that took four independent meteorological variables: temperature, humidity, precipitation and wind speed. Only China cases were considered, to control both cultural aspects and containment policies. Confirmed cases and the 4 meteorological variables were gathered between January 23 and March 1 (39 days) for the 31 provinces of Mainland China. Several periods of time were sampled for each province, obtaining more than one value for the rate of disease progression. Two different periods of time were tested, of 12 and 15 days, along with 3 and 5 different starting points in time, randomly chosen. The median value for each meteorological variable was computed, using the same time period; models with were selected. The rate of progression and doubling time were computed and used to fit a linear regression model. Models were evaluated using α = 0.05.Results indicate that the doubling time correlates positively with temperature and inversely with humidity, suggesting that a decrease in the rate of progression of COVID-19 with the arrival of spring and summer in the north hemisphere. A 20°C increase is expected to delay the doubling time in 1.8 days. Those variables explain 18% of the variation in disease doubling time; the remaining 82% may be related to containment measures, general health policies, population density, transportation or cultural aspects.Competing Interest StatementThe authors have declared no competing interest.Funding StatementFunded by National Funds via FCT (Foundation for Science and Technology) through the Strategic Project UIDB/04539/2020 and UIDP/04539/2020 (CIBB).Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData used in this work is public and is referenced.