TY - JOUR T1 - A Precision Medicine Framework for Personalized Simulation of Hemodynamics in Cerebrovascular Disease JF - medRxiv DO - 10.1101/2020.01.28.20019190 SP - 2020.01.28.20019190 AU - Dietmar Frey AU - Michelle Livne AU - Heiko Leppin AU - Ela M Akay AU - Orhun U Aydin AU - Jonas Behland AU - Jan Sobesky AU - Peter Vajkoczy AU - Vince I Madai Y1 - 2020/01/01 UR - http://medrxiv.org/content/early/2020/01/29/2020.01.28.20019190.abstract N2 - Introduction Cerebrovascular disease is a major public health challenge. An important biomarker is cerebral hemodynamics. To measure cerebral hemodynamics, however, only invasive, potentially harmful or time-to-treatment prolonging methods are available. We present a simulation-based alternative which allows calculation of cerebral hemodynamics based on the individual vessel con figuration of a patient derived from structural vessel imaging.Methods We implemented a framework allowing annotation of extracted brain vessels from structural imaging followed by 0-dimensional lumped modelling of cerebral hemodynamics. For annotation, a 3D-graphical user interface (GUI) was implemented. For 0D-simulation, we used a modified nodal analysis (MNA), which was adapted for easy implementation by code. The code was written in-house in java. The simulation GUI allows inspection of simulation results, identification of vulnerable areas, simulation of changes due to different systemic blood pressures. Moreover, sensitivity analysis was implemented allowing the live simulation of changes of variables such as vessel lumen to simulate procedures and disease courses. In two exemplary patients, simulation results were compared to dynamic-susceptibility-weighted-contrast-enhanced magnetic- resonance(DSC-MR) perfusion imaging.Results The successful implementation of the framework allowing individualized annotation and simulation of patients is presented. In two exemplary patients, both the simulation as well as DSC- MRI showed the same results pertaining to the identification of areas vulnerable to ischemia. Sensitivity analysis allows the individualized simulation of changes in vessel lumen and the effect on hemodynamics.Discussion We present the first precision medicine pipeline for cerebrovascular disease which allows annotation of the arterial vasculature derived from structural vessel imaging followed by personalized simulation of brain hemodynamics. This paves the way for further development of precision medicine in stroke using novel biomarkers and might make the application of harmful and complex perfusion methods obsolete for certain use cases in the future.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work has received funding by the German Federal Ministry of Education and Research through (1) the grant Centre for Stroke Research Berlin and (2) a Go-Bio grant for the research group PREDICTioN2020 (lead: DF).Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesDue to data privacy laws patient data cannot be made accessible. https://doi.org/10.5281/zenodo.3576353. ER -