TY - JOUR T1 - The genetic architecture of left ventricular non-compaction reveals both substantial overlap with other cardiomyopathies and a distinct aetiology in a subset of cases JF - medRxiv DO - 10.1101/2020.01.03.19015602 SP - 2020.01.03.19015602 AU - Francesco Mazzarotto AU - Megan H. Hawley AU - Matteo Beltrami AU - Leander Beekman AU - Beatrice Boschi AU - Francesca Girolami AU - Angharad M. Roberts AU - Elisabeth M. Lodder AU - Elisabetta Cerbai AU - Stuart A. Cook AU - James S. Ware AU - Birgit Funke AU - Iacopo Olivotto AU - Connie R. Bezzina AU - Paul J.R. Barton AU - Roddy Walsh Y1 - 2020/01/01 UR - http://medrxiv.org/content/early/2020/01/06/2020.01.03.19015602.abstract N2 - Rationale Left ventricular non-compaction (LVNC) is a condition characterised by trabeculations in the myocardial wall and is the subject of considerable conjecture as to whether it represents a distinct pathology or a secondary phenotype associated with other cardiac diseases, particularly cardiomyopathies.Objective To investigate the genetic architecture of LVNC by identifying genes and variant classes robustly associated with disease and comparing these to other genetically characterised cardiomyopathies.Methods and Results We performed rare variant association analysis using six different LVNC cohorts comprising 840 cases together with 125,748 gnomAD population controls and compared results to similar analyses with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) cases. We observed substantial overlap in genes and variant classes enriched in LVNC and DCM/HCM, indicating that in many cases LVNC belongs to a spectrum of more established cardiomyopathies, with non-compaction representing a phenotypic variation in patients with DCM- or HCM-causing variants. In contrast, five variant classes were uniquely enriched in LVNC cases, of which truncating variants in MYH7, ACTN2 and PRDM16 may represent a distinct LVNC aetiology. MYH7 truncating variants are generally considered as non-pathogenic but were detected in 2% of LVNC cases compared to 0.1% of controls, including a cluster of variants around a single splice region. Additionally, structural variants (exon deletions) in RYR2 and missense variants in the transmembrane region of HCN4 were enriched in LVNC cases, confirming prior reports regarding the association of these variant classes with combined LVNC and arrhythmia phenotypes.Conclusions We demonstrated that genetic association analysis can clarify the relationship between LVNC and established cardiomyopathies, highlighted substantial overlap with DCM/HCM but also identified variant classes associated with distinct LVNC and with joint LVNC/arrhythmia phenotypes. These results underline the complex genetic landscape of LVNC and inform how genetic testing in LVNC cases should be pursued and interpreted.Competing Interest StatementThe authors have declared no competing interest.Funding StatementRW received support from an Amsterdam Cardiovascular Sciences fellowship. FM is supported by a post-doctoral research fellowship from the University of Florence. CRB acknowledges the support from the Dutch Heart Foundation (CVON 2018-30 Predict 2), the Netherlands Organization for Scientific Research (VICI fellowship, 016.150.610) and Fondation Leducq. IO acknowledges support from the Italian Ministry of Health (RF-2013-02356787) and from the European Union (Horizon 2020 framework program, GA 777204 — SILICOFCM). EML acknowledges the Netherlands Organization for Scientific Research (VIDI fellowship, 91718361) and the Dutch Heart Foundation (CVON 2017-15 RESCUED). AMR, JSW, PJRB and SAC are funded by the Wellcome Trust (107469/Z/15/Z), NIHR Imperial Biomedical Research Centre, NIHR Royal Brompton Biomedical Research Unit, a Health Innovation Challenge Fund award from the Wellcome Trust and Department of Health, UK [HICF-R6-373], the British Heart Foundation (SP/10/10/28431) and the Fondation Leducq [11 CVD-01]. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data is available in the supplemental material. ER -