TY - JOUR T1 - Cost-effectiveness of the next generation of RSV intervention strategies JF - medRxiv DO - 10.1101/19009977 SP - 19009977 AU - David Hodgson AU - Jasmina Panovska-Griffiths AU - Richard Pebody AU - Marc Baguelin AU - Katherine E. Atkins Y1 - 2019/01/01 UR - http://medrxiv.org/content/early/2019/11/05/19009977.abstract N2 - Background With a suite of promising new RSV prophylactics on the horizon, including long-acting monoclonal antibodies and new vaccines, it is likely that one or more of these will replace the current monoclonal Palivizumab programme. However, choosing the optimal intervention programme will require balancing the costs of the programmes with the health benefits accrued.Methods To compare the next generation of RSV prophylactics, we integrated a novel transmission model with an economic analysis. We estimated key epidemiological parameters by calibrating the model to seven years of historical epidemiological data using a Bayesian approach. We determined the cost-effective and affordable maximum purchase price for a comprehensive suite of intervention programmes.Findings Our transmission model suggests that maternal protection of infants is seasonal, with 2-14% of infants born with protection against RSV. Our economic analysis found that to cost-effectively and affordably replace the current monoclonal antibody Palivizumab programme with long-acting monoclonal antibodies, the purchase price per dose would have to be less than around £4,350 but dropping to £200 for vaccinated heightened risk infants or £90 for all infants. A seasonal maternal vaccine would have to be priced less than £85 to be cost-effective and affordable. While vaccinating pre-school and school-age children is likely not cost-effective relative to elderly vaccination programmes, vaccinating the elderly is not likely to be affordable. Conversely, vaccinating infants at 2 months seasonally would be cost-effective and affordable if priced less than £80.Interpretations In a setting with seasonal RSV epidemiology, maternal protection conferred to newborns is also seasonal, an assumption not previously incorporated in transmission models of RSV. For a country with seasonal RSV dynamics like England, seasonal programmes rather than year-round intervention programmes are always optimal.Funding Medical Research Council and National Institute for Health ResearchCompeting Interest StatementThe authors have declared no competing interest.Funding StatementDH: Medical Research Council PhD Studentship administered through CoMPLEX University College London. JPG: The National Institute for Health Research (NIHR) through the Collaboration for Leadership in Applied Health Research and Care North Thames at Bart’s Health NHS Trust (NIHR CLAHRC North Thames). This funder had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The views expressed in this article are those of the authors and not necessarily those of the NHS, the NIHR, or the UK Department of Health and Social Care. RP: None MB: The MRC Centre for Global Infectious Disease Analysis (grant MR/R015600/1) and the UK National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Modelling Methodology (Imperial College London) and Immunisation (London School of Hygiene and Tropical Medicine) in partnership with Public Health England (PHE) (grant HPRU-2012-10080) for funding. The views expressed are those of the authors and not necessarily those of the MRC, the UK National Health Service, the UK National Institute for Health Research, the UK Medical Research Council, the UK Department of Health, or Public Health England. KA: The National Institute for Health Research through the Health Protection Research Unit Immunisation at the London School of Hygiene & Tropical Medicine in partnership with Public Health England. The views expressed are those of the authors and not necessarily those of the UK National Health Service, the UK National Institute for Health Research, the UK Medical Research Council, the UK Department of Health, or Public Health England. Author DeclarationsAll relevant ethical guidelines have been followed and any necessary IRB and/or ethics committee approvals have been obtained.Not ApplicableAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.Not ApplicableAny clinical trials involved have been registered with an ICMJE-approved registry such as ClinicalTrials.gov and the trial ID is included in the manuscript.Not ApplicableI have followed all appropriate research reporting guidelines and uploaded the relevant Equator, ICMJE or other checklist(s) as supplementary files, if applicable.Not ApplicableAll non-patient sensitive data and modelling code are available online on David Hodgson's github account (see link) https://github.com/dchodge/rsv_trans_model ER -