RT Journal Article SR Electronic T1 Longitudinal sequencing and variant detection of SARS-CoV-2 across Southern California wastewater from April 2020 – August 2021 JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2023.04.14.23288559 DO 10.1101/2023.04.14.23288559 A1 Jason A. Rothman A1 Andrew Saghir A1 Amity G. Zimmer-Faust A1 Kylie Langlois A1 Joshua A. Steele A1 John F. Griffith A1 Katrine L. Whiteson YR 2023 UL http://medrxiv.org/content/early/2023/04/15/2023.04.14.23288559.abstract AB Wastewater based epidemiology (WBE) is a useful method to detect pathogen prevalence and may serve to effectively monitor diseases at a broad scale. WBE has been used throughout the COVID-19 pandemic to track localized and population-level disease burden through the quantification of SARS-CoV-2 RNA present in wastewater. Aside from case load estimation, WBE is being used to assay viral genomic diversity and the emergence of potential SARS-CoV-2 variants.Here, we present a study in which we sequenced RNA extracted from sewage influent samples obtained from eight wastewater treatment plants representing 16 million people in Southern California over April 2020 – August 2021. We sequenced SARS-CoV-2 with two methods: Illumina Respiratory Virus Enrichment and metatranscriptomic sequencing (N = 269), and QIAseq SARS-CoV-2 tiled amplicon sequencing (N = 95). We were able to classify SARS-CoV-2 reads into lineages and sublineages that approximated several named variants across a full year, and we identified a diversity of single nucleotide variants (SNVs) of which many are putatively novel SNVs, and SNVs of unknown potential function and prevalence. Through our retrospective study, we also show that several sublineages of SARS-CoV-2 were detected in wastewater up to several months before clinical detection, which may assist in the prediction of future Variants of Concern. Lastly, we show that sublineage diversity was similar between wastewater treatment plants across Southern California, and that diversity changed by sampling month indicating that WBE is effective across megaregions.As the COVID-19 pandemic moves to new phases, and additional SARS-CoV-2 variants emerge, the ongoing monitoring of wastewater is important to understand local and population-level dynamics of the virus. Our study shows the potential of WBE to detect SARS-CoV-2 variants throughout Southern California’s wastewater and track the diversity of viral SNVs and strains in urban and suburban locations. These results will aid in our ability to monitor the evolutionary potential of SARS-CoV-2 and help understand circulating SNVs to further combat COVID-19.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research was supported by the University of California Office of the President Research Grants Program Office (award numbers R01RG3732 and R00RG2814) awarded to JAR and KLW, and a Hewitt Foundation for Biomedical Research postdoctoral fellowship to JAR.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesRaw sequencing files have been deposited at the NCBI Sequence Read Archive under accession number PRJNA729801. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA729801