RT Journal Article SR Electronic T1 Cov2clusters: genomic clustering of SARS-CoV-2 sequences JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2022.03.10.22272213 DO 10.1101/2022.03.10.22272213 A1 Benjamin Sobkowiak A1 Kimia Kamelian A1 James E. A. Zlosnik A1 John Tyson A1 Anders Gonçalves da Silva A1 Linda M. N. Hoang A1 Natalie Prystajecky A1 Caroline Colijn YR 2022 UL http://medrxiv.org/content/early/2022/03/13/2022.03.10.22272213.abstract AB Background The COVID-19 pandemic remains a global public health concern. Advances in rapid sequencing has led to an unprecedented level of SARS-CoV-2 whole genome sequence (WGS) data and sharing of sequences through global repositories that has enabled almost real-time genomic analysis of the pathogen. WGS data has been used previously to group genetically similar viral pathogens to reveal evidence of transmission, including methods that identify distinct clusters on a phylogenetic tree. Identifying clusters of linked cases can aid in the regional surveillance and management of the disease. In this study, we present a novel method for producing stable genomic clusters of SARS-CoV-2 cases, cov2clusters, and compare the sensitivity and stability of our approach to previous methods used for phylogenetic clustering using real-world SARS-CoV-2 sequence data obtained from British Columbia, Canada,Results We found that cov2clusters produced more stable clusters than previously used phylogenetic clustering methods when adding sequence data through time, mimicking an increase in sequence data through the pandemic. Our method also showed high sensitivity when compared to epidemiologically informed clusters. These clusters often contained a high number of cases that were identical or near identical genetically.Conclusions This new approach presented here allows for the identification of stable clusters of SARS-CoV-2 from WGS data. Producing high-resolution SARS-CoV-2 clusters from sequence data alone can a challenge and, where possible, both genomic and epidemiological data should be used in combination.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported by funding from Michael Smith Foundation for Health Research and he Federal Government of Canada's Canada 150 Research Chair program. This work was supported by the Canadian Covid genomics network (CanCoGen).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The study was approved by the University of British Columbia Ethics Board (#H20-02285).I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesWhole genome sequence data included in this study are deposited in the GISAID repository https://www.gisaid.org. The cov2clusters code is available at: https://github.com/bensobkowiak/cov2clusters.