TY - JOUR T1 - COVID-19 in Japan: insights from the first three months of the epidemic JF - medRxiv DO - 10.1101/2022.02.10.22270735 SP - 2022.02.10.22270735 AU - Natsuko Imai AU - Katy AM Gaythorpe AU - Sangeeta Bhatia AU - Tara D Mangal AU - Gina Cuomo-Dannenburg AU - H Juliette T Unwin AU - Elita Jauneikaite AU - Neil M Ferguson Y1 - 2022/01/01 UR - http://medrxiv.org/content/early/2022/02/13/2022.02.10.22270735.abstract N2 - Background Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data.Methods We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs.Results The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ±2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95%CrI:1.6, 3.3) nationally. In the final week of the trusted period, Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6) respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients <20 years old developing pneumonia or severe respiratory symptoms.Conclusions Information collected in the early phases of an outbreak are important in characterising any novel pathogen. Timely recognition of key symptoms and high-risk settings for transmission can help to inform response strategies. The data analysed here were the result of robust and timely investigations and demonstrate the improvements to epidemic control as a result of such surveillance.Competing Interest StatementThe authors have declared no competing interest.Funding StatementWe acknowledge funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union; and acknowledges funding by Community Jameel. HJTU acknowledges funding from Imperial College London. GC-D acknowledges PhD funding from the Royal Society (reference RGF\EA\180225). SB acknowledges funding from the Wellcome Trust (reference 219415). EJ is an Imperial College Research Fellow funded by Rosetrees Trust and the Stoneygate Trust (M683). The funders played no role in the design of the study and collection, analysis, and interpretation of data or in writing the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study involves only openly available case reports, which can be obtained from the Japanese Ministry of Health website. These have been collated for ease here: https://github.com/mrc-ide/early-japanI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data used in this analysis were collated from publicly available Japanese Ministry of Health case reports and all urls are made available on GitHub. The repository can be found here: https://github.com/mrc-ide/early-japan. The full extracted data used and/or analysed during the current study are available from the corresponding author on reasonable request. https://github.com/mrc-ide/early-japan List of AbbreviationsPCRPolymerase Chain reactionRttime-varying reproduction number ER -