TY - JOUR T1 - Potential application of Rapid Antigen Diagnostic Tests for the detection of infectious individuals attending mass gatherings – a simulation study JF - medRxiv DO - 10.1101/2022.01.02.22268621 SP - 2022.01.02.22268621 AU - Conor G. McAloon AU - Darren Dahly AU - Cathal Walsh AU - Patrick Wall AU - Breda Smyth AU - Simon More AU - Conor Teljeur Y1 - 2022/01/01 UR - http://medrxiv.org/content/early/2022/01/02/2022.01.02.22268621.abstract N2 - Rapid Antigen Diagnostic Tests (RADTs) for the detection of SARS-CoV-2 offer advantages in that they are cheaper and faster than currently used PCR tests but have reduced sensitivity and specificity. One potential application of RADTs is to facilitate gatherings of individuals, through testing of attendees at the point of, or immediately prior to entry at a venue. Understanding the baseline risk in the tested population is of particular importance when evaluating the utility of applying diagnostic tests for screening purposes. We used incidence data to estimate the prevalence of infectious individuals in the community at a particular time point and simulated mass gatherings by sampling from a series of age cohorts. Nine different illustrative scenarios were simulated, small (n=100), medium (n=1000) and large (n=10,000) gatherings each with 3 possible age constructs: mostly younger, mostly older or a gathering with equal numbers from each age cohort. For each scenario, we estimated the prevalence of infectious attendees, then simulated the likely number of positive and negative test results, the proportion of cases detected and the corresponding positive and negative predictive values, and the cost per case identified. Our findings suggest that for each detected individual on a given day, there are likely to be 13.8 additional infectious individuals also present in the community. Prevalence of infectious individuals at events was highest with ‘mostly younger’ attendees (1.00%), followed by homogenous age gatherings (0.55%) and lowest with ‘mostly older events’ (0.26%). For small events (100 attendees) the expected number of infectious attendees was less than 1 across all age constructs of attendees. For large events (10,000 attendees) the expected number of infectious attendees ranged from 26 (95% confidence intervals 12 to 45) for mostly older events, to almost 100 (95% confidence intervals 46 to 174) infectious attendees for mostly younger attendees. Given rapid changes in SARS-CoV-2 incidence over time, we developed an RShiny app to allow users to run updated simulations for specific events.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the present work are contained in the manuscript ER -