RT Journal Article SR Electronic T1 Estimating area-level variation in SARS-CoV-2 infection fatality ratios JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.12.04.21267288 DO 10.1101/2021.12.04.21267288 A1 Ladau, Joshua A1 Kuo, Chaincy A1 Brodie, Eoin L. A1 Falco, Nicola A1 Bansal, Ishan A1 Hoffman, Elijah B. A1 Joachimiak, Marcin P. A1 Mora, Ana M. A1 Walker, Angelica M. A1 Wainwright, Haruko M. A1 Wu, Yulun A1 Jacobson, Daniel A1 Hess, Matthias A1 Brown, James B. A1 Abuabara, Katrina YR 2021 UL http://medrxiv.org/content/early/2021/12/05/2021.12.04.21267288.abstract AB Background During a pandemic, estimates of geographic variability in disease burden are important but limited by the availability and quality of data.Methods We propose a framework for estimating geographic variability in testing effort, total number of infections, and infection fatality ratio (IFR). Because symptomatic people are more likely to seek testing, we use a noncentral hypergeometric model that accounts for differential probability of positive tests. We apply this framework to the United States (U.S.) COVID-19 pandemic to estimate county-level SARS-CoV-2 IFRs from March 1, 2020 to October 31, 2020. Using data on population size, number of observed cases, number of reported deaths in each U.S. county and state, and number of tests in each U.S. state, we develop a series of estimators to identify the number of SARS-CoV-2 infections and IFRs at the county level. We then perform a simulation and compare the estimated values to simulated values to demonstrate the validity of our approach.Findings Applying the county-level estimators to the real, unsimulated COVID-19 data spanning March 1, 2020 to October 31, 2020 from across the U.S., we found that IFRs varied from 0 to 0.0273, with an interquartile range of 0.0022 and a median of 0.0018. The estimators for IFRs, number of infections, and number of tests showed high accuracy and precision; for instance, when applied to simulated validation data sets, across counties, Pearson correlation coefficients between estimator means and true values were 0.88, 0.95, and 0.74, respectively.Interpretation We propose an estimation framework that can be used to identify area-level variation in IFRs and performs well to estimate county-level IFRs in the U.S. COVID-19 pandemic.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This manuscript has been coauthored by UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan, last accessed September 16, 2020). Work at Oak Ridge and Lawrence Berkeley National Laboratories was supported by the DOE Office of Science through the National Virtual Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by the Coronavirus CARES Act, and was facilitated by previous breakthroughs obtained through the Laboratory Directed Research and Development Programs of the Lawrence Berkeley and Oak Ridge National Laboratories. M.P.J. was supported by a grant from the Laboratory Directed Research and Development (LDRD) Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. None of the authors received payment or services from a third party for any aspect of the submitted work.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study involves only openly available human data, which can be obtained from: https://coronavirus.jhu.edu/ https://github.com/CSSEGISandData/COVID-19 https://covidtracking.comI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the present study are available upon reasonable request to the authors.