RT Journal Article SR Electronic T1 A generic method and software to estimate the transmission advantage of pathogen variants in real-time : SARS-CoV-2 as a case-study JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.11.26.21266899 DO 10.1101/2021.11.26.21266899 A1 Bhatia, Sangeeta A1 Wardle, Jack A1 Nash, Rebecca K A1 Nouvellet, Pierre A1 Cori, Anne YR 2021 UL http://medrxiv.org/content/early/2021/11/28/2021.11.26.21266899.abstract AB Recent months have demonstrated that emerging variants may set back the global COVID-19 response. The ability to rapidly assess the threat of new variants in real-time is critical for timely optimisation of control strategies.We extend the EpiEstim R package, designed to estimate the time-varying reproduction number (Rt), to estimate in real-time the effective transmission advantage of a new variant compared to a reference variant. Our method can combine information across multiple locations and over time and was validated using an extensive simulation study, designed to mimic a variety of real-time epidemic contexts.We estimate that the SARS-CoV-2 Alpha variant is 1.46 (95% Credible Interval 1.44-1.47) and 1.29, (95% CrI 1.29-1.30) times more transmissible than the wild type, using data from England and France respectively. We further estimate that Beta and Gamma combined are 1.25 (95% CrI 1.24-1.27) times more transmissible than the wildtype (France data). All results are in line with previous estimates from literature, but could have been obtained earlier and more easily with our off-the-shelf open-source tool.Our tool can be used as an important first step towards quantifying the threat of new variants in real-time. Given the popularity of EpiEstim, this extension will likely be used widely to monitor the co-circulation and/or emergence of multiple variants of infectious pathogens.Significance Statement Early assessment of the transmissibility of new variants of an infectious pathogen is critical for anticipating their impact and designing appropriate interventions. However, this often requires complex and bespoke analyses relying on multiple data streams, including genomic data. Here we present a novel method and software to rapidly quantify the transmission advantage of new variants. Our method is fast and requires only routinely collected disease surveillance data, making it easy to use in real-time. The ongoing high level of SARS-CoV-2 circulation in a number of countries makes the emergence of new variants highly likely. Our work offers a powerful tool to help public health bodies monitor such emerging variants and rapidly detect those with increased transmissibility.Competing Interest StatementAC has received payment from Pfizer for teaching of mathematical modelling of infectious diseases.Funding StatementThis study is partially funded by the National Institute for Health Research (NIHR) Health Protection Research Unit in Modelling and Health Economics, a partnership between Public Health England, Imperial College London and LSHTM (grant code NIHR200908); the authors acknowledge funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), which is jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. JW acknowledges research funding from the Wellcome Trust (grant 102169/Z/13/Z). SB acknowledges funding from the Wellcome Trust (grant 219415). RKN acknowledges funding from the Medical Research Council Doctoral Training Partnership. Disclaimer: The views expressed are those of the author(s) and not necessarily those of the NIHR, Public Health England or the Department of Health and Social Care.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data used in the study are available online at https://github.com/mrc-ide/epiestims https://github.com/mrc-ide/epiestims