RT Journal Article SR Electronic T1 Predicting the Effectiveness of Covid-19 Vaccines from SARS-CoV-2 Variants Neutralisation Data JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.09.06.21263160 DO 10.1101/2021.09.06.21263160 A1 Oleg Volkov A1 Svetlana Borozdenkova A1 Alexander Gray YR 2021 UL http://medrxiv.org/content/early/2021/10/07/2021.09.06.21263160.abstract AB Rapid and accurate prediction of Covid-19 vaccine effectiveness is crucial to response against SARS-CoV-2 variants of concern. Despite intensive research, several prediction tasks are not well supported, such as predicting effectiveness of partial vaccination, of vaccine boosters and in vaccinated subpopulations. This paper introduces a novel predictive framework to accommodate such tasks and improve prediction accuracy. It was developed for predicting the symptomatic effectiveness of the BNT162b2 (Comirnaty) and ChAdOx1 nCoV-19 (Vaxzevria) vaccines but could apply to other vaccines and effectiveness types. Direct prediction within the framework uses levels of vaccine-induced neutralising antibodies against SARS-CoV-2 variants to fit efficacy and effectiveness estimates from studies with a given vaccine. Indirect prediction uses a model fitted for one vaccine to predict the effectiveness of another. The directly predicted effectiveness of Comirnaty against the Delta variant was 44.8% (22, 69) after one and 84.6% (64, 97) after two doses, which is close to 45.6% and 85.5%, the average estimates from effectiveness studies with the vaccine. The corresponding direct predictions for Vaxzevria were 41.6% (18, 68) and 63.2% (37, 86); and the indirect predictions, from the model fitted to Comirnaty data, were 45.5% (23, 70) and 61.2% (37, 83). Both sets of predictions are comparable to the average estimates, 42.5% and 66.3%, from effectiveness studies with Vaxzevria. Further results are presented on age subgroups; prediction biases and their mitigation; and implications for vaccination policies.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work received no external funding.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The paper only used publicly available data collected externally.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and R code used for this paper will be freely available in October 2021. https://github.com/spockoyno/pfizer_biontech_vaccine_paper