RT Journal Article SR Electronic T1 Temporal Geospatial Analysis of COVID-19 Pre-infection Determinants of Risk in South Carolina JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.08.02.21261500 DO 10.1101/2021.08.02.21261500 A1 Tianchu Lyu A1 Nicole Hair A1 Nicholas Yell A1 Zhenlong Li A1 Shan Qiao A1 Chen Liang A1 Xiaoming Li YR 2021 UL http://medrxiv.org/content/early/2021/08/05/2021.08.02.21261500.abstract AB Introduction Disparities and their geospatial patterns exist in coronavirus disease 2019 (COVID-19) morbidity and mortality for people who are engaged with clinical care. However, studies centered on viral infection cases are scarce. It remains unclear with respect to the disparity structure, its geospatial characteristics, and the pre-infection determinants of risk (PIDRs) for people with the infection. This work aimed to assess the geospatial associations between PIDRs and COVID-19 infection at the county level in South Carolina by different timepoints during the pandemic.Method We used global models including spatial error model (SEM), spatial lag model (SLM), and conditional autoregressive model (CAR), as well as geographically weighted regression model (GWR) as a local model to examine the associations between COVID-19 infection rate and PIDRs. The data were retrieved from multiple sources including USAFacts, US Census Bureau, and Population Estimates Program.Results The percentage of males and the percentage of the unemployed population were statistically significant (p values < 0.05) with positive coefficients in the three global models (SEM, SLM, CAR) throughout the time. The percentage of white population and obesity rate showed divergent spatial correlations at different times of the pandemic. GWR models consistently have a better model fit than global models, suggesting non-stationary correlations between a region and its neighbors.Conclusion Characterized by temporal-geospatial patterns, disparities and their PIDRs exist in COVID-19 incidence at the county level in South Carolina. The temporal-geospatial structure of disparities and their PIDRs found in COVID-19 incidence are different from mortality and morbidity for patients who are connected with clinical care. Our findings provided important evidence for prioritizing different populations and developing tailored interventions at different times of the pandemic. These findings provided implications on containing early viral transmission and mitigating consequences of infectious disease outbreaks for possible future pandemics.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study is supported by a seed grant from the University of South Carolina Arnold School of Public Health.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No human subject studyAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data referred to in this manuscript are publicly available.