%0 Journal Article %A Xiaolin Wu %A Yie Hou Lee %A Timothy K. Lu %A Hanry Yu %T A Warm-start Digital CRISPR-based Method for the Quantitative Detection of Nucleic Acids %D 2021 %R 10.1101/2021.06.10.21258725 %J medRxiv %P 2021.06.10.21258725 %X Nucleic acids-based molecular diagnostic tools incorporating the CRISPR/Cas system are being developed as rapid and sensitive methods for pathogen detection. However, most CRISPR/Cas-based diagnostics lack quantitative detection ability. Here, we report Warm-Start RApid DIgital Crispr Approach (WS-RADICA), which uses commercially available digital chips for the rapid, sensitive, and quantitative detection of nucleic acids. WS-RADICA detected as little as 1 copy/μl SARS-CoV-2 RNA in 40 min (qualitative detection) or 60 min (quantitative detection). WS-RADICA can be easily adapted to various digital devices: two digital devices were evaluated for both DNA and RNA quantification, with linear dynamic ranges of 0.8-12777 copies/µL for DNA and 1.2-18391 copies/µL for RNA (both R2 values > 0.99). Moreover, WS-RADICA had greater sensitivity and inhibitor tolerance than a bulk RT-LAMP-Cas12b reaction and similar performance to RT-qPCR and RT-dPCR. Given its speed, sensitivity, quantification capability, and inhibitor tolerance, WS-RADICA shows great promise for a variety of applications requiring nucleic acid quantification.Competing Interest StatementX.W., T.K.L., and H.Y. are co-inventors on patent filings related to the published work. T.K.L. is a co-founder of Senti Biosciences, Synlogic, Engine Biosciences, Tango Therapeutics, Corvium, BiomX, Eligo Biosciences, Bota.Bio, Avendesora, and NE47Bio. T.K.L. also holds financial interests in nest.bio, Armata, IndieBio, MedicusTek, Quark Biosciences, Personal Genomics, Thryve, Lexent Bio, MitoLab, Vulcan, Serotiny, Avendesora, Pulmobiotics, Provectus Algae, Invaio, NSG Biolabs. H.Y. declares holding equity in Invitrocue, Osteopore, Histoindex, Vasinfuse, Ants Innovate and Synally Futuristech that have no conflict of interest with the work reported in this paper.Funding StatementThis work was supported by the National Research Foundation, Prime Minister Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme, through Singapore MIT Alliance for Research and Technology (SMART): Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Inter-Disciplinary Research Group.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Not applicable. Only synthetic RNA/DNA were used in this study.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe authors declare that all data supporting the findings of this study are available within the paper (and its supplementary information files). Correspondence and requests for materials should be addressed to H.Y. and T.K.L.   %U https://www.medrxiv.org/content/medrxiv/early/2021/06/15/2021.06.10.21258725.full.pdf