RT Journal Article SR Electronic T1 When can we stop wearing masks? Agent-based modeling to identify when vaccine coverage makes nonpharmaceutical interventions for reducing SARS-CoV-2 infections redundant in indoor gatherings JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.04.19.21255737 DO 10.1101/2021.04.19.21255737 A1 Trevor S. Farthing A1 Cristina Lanzas YR 2021 UL http://medrxiv.org/content/early/2021/04/27/2021.04.19.21255737.abstract AB As vaccination efforts to combat the COVID-19 pandemic are ramping up worldwide, there are rising concerns that individuals will begin to eschew nonpharmaceutical interventions for preventing SARS-CoV-2 transmission and attempt to return to pre-pandemic normalcy before vaccine coverage levels effectively mitigate transmission risk. In the U.S.A., some governing bodies have already weakened or repealed guidelines for nonpharmaceutical intervention use, despite a recent spike in national COVID-19 cases and majority population of unvaccinated individuals. Recent modeling suggests that repealing nonpharmaceutical intervention guidelines too early into vaccine rollouts will lead to localized increases in COVID-19 cases, but the magnitude of nonpharmaceutical intervention effects on individual-level SARS-CoV-2 infection risk in fully- and partially-vaccinated populations is unclear. We use a previously-published agent-based model to simulate SARS-CoV-2 transmission in indoor gatherings of varying durations, population densities, and vaccination coverage levels. By simulating nonpharmaceutical interventions in some gatherings but not others, we were able to quantify the difference in SARS-CoV-2 infection risk when nonpharmaceutical interventions were used, relative to scenarios with no nonpharmaceutical interventions. We found that nonpharmaceutical interventions will often reduce secondary attack rates, especially during brief interactions, and therefore there is no definitive vaccination coverage level that makes nonpharmaceutical interventions completely redundant. However, the reduction effect on absolute SARS-CoV-2 infection risk conferred by nonpharmaceutical interventions is likely proportional to COVID-19 prevalence. Therefore, if COVID-19 prevalence decreases in the future, nonpharmaceutical interventions will likely still confer protective effects but potential benefits may be small enough to remain within “effectively negligible” risk thresholds.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was partially supported by CDC U01CK000587-01M001 and R35GM134934.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:NAAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesWe first made our ABM publicly available for download in Farthing et al. (2021). The current iteration can be downloaded from the Lanzas lab github repository at https://github.com/lanzaslab/droplet-ABM. https://github.com/lanzaslab/droplet-ABM