RT Journal Article SR Electronic T1 Multilevel and Quasi Monte Carlo methods for the calculation of the Expected Value of Partial Perfect Information JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.03.30.21254626 DO 10.1101/2021.03.30.21254626 A1 Wei Fang A1 Zhenru Wang A1 Michael B. Giles A1 Chris H. Jackson A1 Nicky J. Welton A1 Christophe Andrieu A1 Howard Thom YR 2021 UL http://medrxiv.org/content/early/2021/04/04/2021.03.30.21254626.abstract AB The expected value of partial perfect information (EVPPI) provides an upper bound on the value of collecting further evidence on a set of inputs to a cost-effectiveness decision model. Standard Monte Carlo (MC) estimation of EVPPI is computationally expensive as it requires nested simulation. Alternatives based on regression approximations to the model have been developed, but are not practicable when the number of uncertain parameters of interest is large and when parameter estimates are highly correlated. The error associated with the regression approximation is difficult to determine, while MC allows the bias and precision to be controlled. In this paper, we explore the potential of Quasi Monte-Carlo (QMC) and Multilevel Monte-Carlo (MLMC) estimation to reduce computational cost of estimating EVPPI by reducing the variance compared with MC, while preserving accuracy. In this paper, we develop methods to apply QMC and MLMC to EVPPI, addressing particular challenges that arise where Markov Chain Monte Carlo (MCMC) has been used to estimate input parameter distributions. We illustrate the methods using a two examples: a simplified decision tree model for treatments for depression, and a complex Markov model for treatments to prevent stroke in atrial fibrillation, both of which use MCMC inputs. We compare the performance of QMC and MLMC with MC and the approximation techniques of Generalised Additive Model regression (GAM), Gaussian process regression (GP), and Integrated Nested Laplace Approximations (INLA-GP). We found QMC and MLMC to offer substantial computational savings when parameter sets are large and correlated, and when the EVPPI is large. We also find GP and INLA-GP to be biased in those situations, while GAM cannot estimate EVPPI for large parameter sets.Competing Interest StatementThe authors have declared no competing interest.Funding StatementWF, ZW, and HT were supported by the Hubs for Trials Methodology Research (HTMR) network grant N79 for this work. HT and NJW were supported by the HTMR Collaboration and innovation in Difficult and Complex randomised controlled Trials In Invasive procedures (ConDuCT-II). HT and NJW were also supported by the National Institute for Health Research (NIHR) Bristol Biomedical Research Centre (BRC) for part of this work. HT was furthermore supported by MRC grant MR/S036709/1. CA would like to thank support of EPSRC EP/R018561/1 Bayes4Health. CJ was funded by the UK Medical Research Council programme MC_UU_00002/11. The directly acting oral anticoagulants for prevention of stroke in atrial fibrillation model was funded by NIHR Health Technology Assessment programme project number 11/92/17 and NIHR Senior Investigator award NF-SI-0611-10168.We are also grateful to Mark Strong at University of Sheffield for providing his R code to estimate EVPPI, plus its SE and upward bias, using GAM and GP.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Not necessary as modelling study synthesising published, and not individual patient, data.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll code and data necessary to the produce the results are available in this GitHub repository: https://github.com/Bogdasayen/Example_MLMC_and_QMC_for_EVPPI The simple demo of MLMC can be found at this repository: https://github.com/Bogdasayen/mlmc_evppi_demo https://github.com/Bogdasayen/mlmc_evppi_demo