TY - JOUR T1 - Evaluation of COVID-19 vaccination strategies with a delayed second dose JF - medRxiv DO - 10.1101/2021.01.27.21250619 SP - 2021.01.27.21250619 AU - Seyed M. Moghadas AU - Thomas N. Vilches AU - Kevin Zhang AU - Shokoofeh Nourbakhsh AU - Pratha Sah AU - Meagan C. Fitzpatrick AU - Alison P. Galvani Y1 - 2021/01/01 UR - http://medrxiv.org/content/early/2021/03/26/2021.01.27.21250619.abstract N2 - Two of the COVID-19 vaccines currently approved in the United States require two doses, administered three to four weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious SARS-CoV-2 variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose, or to continue with the recommended two-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these two vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of pre-existing immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% CrI: 7.8 − 29.7) infections, 0.71 (95% CrI: 0.52 - 0.97) hospitalizations, and 0.34 (95% CrI: 0.25 - 0.44) deaths per 10,000 population compared to the recommended 4-week interval between the two doses. Pfizer-BioNTech vaccines also averted an additional 0.61 (95% CrI: 0.37 - 0.89) hospitalizations and 0.31 (95% CrI: 0.23 - 0.45) deaths per 10,000 population in a 9-week delayed second dose strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the two doses.Competing Interest StatementThe authors have declared no competing interest.Funding StatementCanadian Institutes of Health Research [OV4-170643, COVID-19 Rapid Research]; São Paulo Research Foundation [18/24811-1]; the National Institutes of Health [1RO1AI151176-01; 1K01AI141576-01], and the National Science Foundation [RAPID 2027755; CCF-1918784].Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No ethics approval required.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe computational system and parameters are available under an open source license at: https://github.com/thomasvilches/delayed_dose. ER -