TY - JOUR T1 - The vaccine-elicited immunoglobulin profile in milk after COVID-19 mRNA-based vaccination is IgG-dominant and lacks secretory antibodies JF - medRxiv DO - 10.1101/2021.03.22.21253831 SP - 2021.03.22.21253831 AU - Alisa Fox AU - Caroline Norris AU - Fatima Amanat AU - Susan Zolla-Pazner AU - Rebecca L. Powell Y1 - 2021/01/01 UR - http://medrxiv.org/content/early/2021/03/26/2021.03.22.21253831.abstract N2 - The Pfizer/BioNTech and Moderna mRNA-based COVID-19 vaccines are licensed under emergency use authorization, with millions of doses already administered globally [1]. No COVID-19 vaccines are yet under investigation for use in infants or young children. As such, the passive immunity of the antibodies (Abs) provided through milk from a vaccinated person may be one of the only ways to protect this population until pediatric COVID-19 vaccines are licensed. Our early work (as well as an expanded study being published concurrently with this report) examining the milk Ab response after SARS-CoV-2 infection demonstrated that Spike-specific IgA in milk after infection is dominant and highly correlated with a secretory Ab response [2]. Determining if secretory Abs are elicited in milk is critical, as this Ab class is highly stable and resistant to enzymatic degradation in all mucosae - not only in the infant oral/nasal cavity and gut, but in the airways and GI tract as well [3, 4]. Presently, we describe our analysis of the milk Ab response 14 days after completion of an mRNA-based COVID-19 vaccine regimen among 10 individuals. It was evident that unlike the post-infection milk Ab profile, IgG dominates after COVID-19 vaccination. One hundred percent of post-vaccine milk contained significant levels of Spike-specific IgG, with 8/10 samples exhibiting high IgG endpoint titers. Conversely, 6/10 (60%) of post-vaccine samples were positive for Spike specific IgA, with only 1 (10%) exhibiting high IgA endpoint titer. Furthermore, 5/10 (50%) post-vaccine milk samples contained Spike-specific secretory Ab, none of which were found to be high-titer. As our analyses of the immune response in milk to COVID-19 vaccination continues, it will provide a critical opportunity to address huge knowledge gaps, inform the field as to which COVID-19 vaccine, if any, is likely to provide the best milk Ab response, and highlight the need to design improved vaccines with protection of the breastfeeding infant in mind.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThe work presented herein was supported by the NIH/NIAIDAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was approved by the Institutional Review Board (IRB) at Mount Sinai Hospital (IRB 19-01243)All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data is presented in the manuscript and raw data is available from the corresponding author upon request ER -