PT - JOURNAL ARTICLE AU - Nafilyan, Vahe AU - Humberstone, Ben AU - Mehta, Nisha AU - Diamond, Ian AU - Coupland, Carol AU - Lorenzi, Luke AU - Pawelek, Piotr AU - Schofield, Ryan AU - Morgan, Jasper AU - Brown, Paul AU - Lyons, Ronan AU - Sheikh, Aziz AU - Hippisley-Cox, Julia TI - An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: national validation cohort study in England AID - 10.1101/2021.01.22.21249968 DP - 2021 Jan 01 TA - medRxiv PG - 2021.01.22.21249968 4099 - http://medrxiv.org/content/early/2021/01/25/2021.01.22.21249968.short 4100 - http://medrxiv.org/content/early/2021/01/25/2021.01.22.21249968.full AB - Background To externally validate a risk prediction algorithm (QCovid) to estimate mortality outcomes from COVID-19 in adults in England.Methods Population-based cohort study using the ONS Public Health Linked Data Asset, a cohort based on the 2011 Census linked to Hospital Episode Statistics, the General Practice Extraction Service Data for pandemic planning and research, radiotherapy and systemic chemotherapy records. The primary outcome was time to COVID-19 death, defined as confirmed or suspected COVID-19 death as per death certification. Two time periods were used: (a) 24th January to 30th April 2020; and (b) 1st May to 28th July 2020. We evaluated the performance of the QCovid algorithms using measures of discrimination and calibration for each validation time period.Findings The study comprises 34,897,648 adults aged 19-100 years resident in England. There were 26,985 COVID-19 deaths during the first time-period and 13,177 during the second. The algorithms had good calibration in the validation cohort in both time periods with close correspondence of observed and predicted risks. They explained 77.1% (95% CI: 76.9% to 77.4%) of the variation in time to death in men in the first time-period (R2); the D statistic was 3.76 (95% CI: 3.73 to 3.79); Harrell’s C was 0.935 (0.933 to 0.937). Similar results were obtained for women, and in the second time-period. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths in the first time period was 65.9% for men and 71.7% for women. People in the top 20% of predicted risks of death accounted for 90.8% of all COVID-19 deaths for men and 93.0% for women.Interpretation The QCovid population-based risk algorithm performed well, showing very high levels of discrimination for COVID-19 deaths in men and women for both time periods. It has the potential to be dynamically updated as the pandemic evolves and therefore, has potential use in guiding national policy.Funding National Institute of Health ResearchEvidence before this study Public policy measures and clinical risk assessment relevant to COVID-19 need to be aided by rigorously developed and validated risk prediction models. A recent living systematic review of published risk prediction models for COVID-19 found most models are subject to a high risk of bias with optimistic reported performance, raising concern that these models may be unreliable when applied in practice. A population-based risk prediction model, QCovid risk prediction algorithm, has recently been developed to identify adults at high risk of serious COVID-19 outcomes, which overcome many of the limitations of previous tools.Added value of this study Commissioned by the Chief Medical Officer for England, we validated the novel clinical risk prediction model (QCovid) to identify risks of short-term severe outcomes due to COVID-19. We used national linked datasets from general practice, death registry and hospital episode data for a population-representative sample of over 34 million adults. The risk models have excellent discrimination in men and women (Harrell’s C statistic>0.9) and are well calibrated. QCovid represents a new, evidence-based opportunity for population risk-stratification.Implications of all the available evidence QCovid has the potential to support public health policy, from enabling shared decision making between clinicians and patients in relation to health and work risks, to targeted recruitment for clinical trials, and prioritisation of vaccination, for example.Competing Interest StatementJHC reports grants from National Institute for Health Research Biomedical Research Centre, Oxford, grants from John Fell Oxford University Press Research Fund, grants from Cancer Research UK (CR-UK) grant number C5255/A18085, through the Cancer Research UK Oxford Centre, grants from the Oxford Wellcome Institutional Strategic Support Fund (204826/Z/16/Z), during the conduct of the study. JHC is an unpaid director of QResearch, a not-for-profit organisation which is a partnership between the University of Oxford and EMIS Health who supply the QResearch database used for this work. JHC is a founder and shareholder of ClinRisk ltd and was its medical director until 31st May 2019. ClinRisk Ltd produces open and closed source software to implement clinical risk algorithms (outside this work) into clinical computer systems.Funding StatementFunding: National Institute of Health ResearchAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The ethics approval for the development and validation of QCovid was granted by the East Midlands-Derby Research Ethics Committee [reference 18/EM/0400].All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe ONS Public Health Linked Data Asset will be made available on the ONS Secure Research Service for Accredited researchers. Researchers can apply for accreditation through the Research Accreditation Service. The data will include all variables used in this analysis, except predictors based on radiotherapy and systemic chemotherapy records, which cannot be shared.