RT Journal Article SR Electronic T1 Optimal SARS-CoV-2 vaccine allocation using real-time seroprevalence estimates in Rhode Island and Massachusetts JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.01.12.21249694 DO 10.1101/2021.01.12.21249694 A1 Tran, Thu Nguyen-Anh A1 Wikle, Nathan A1 Albert, Joseph A1 Inam, Haider A1 Strong, Emily A1 Brinda, Karel A1 Leighow, Scott M A1 Yang, Fuhan A1 Hossain, Sajid A1 Pritchard, Justin R A1 Chan, Philip A1 Hanage, William P A1 Hanks, Ephraim M A1 Boni, Maciej F YR 2021 UL http://medrxiv.org/content/early/2021/01/15/2021.01.12.21249694.abstract AB As three SARS-CoV-2 vaccines come to market in Europe and North America in the winter of 2020-2021, distribution networks will be in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation is critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs require that distribution is prioritized to the elderly, health-care workers, teachers, essential workers, and individuals with co-morbidities putting them at risk of severe clinical progression. Here, we evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not be included in the first round of vaccination. And, we account for current age-specific immune patterns in both states. We find that allocating a substantial proportion (> 75%) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. As we do not explicitly model other high mortality groups, this result on vaccine allocation applies to all groups at high risk of mortality if infected. Our analysis confirms that for an easily transmissible respiratory virus, allocating a large majority of vaccinations to groups with the highest mortality risk is optimal. Our analysis assumes that health systems during winter 2020-2021 have equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. Vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and will result in 1% to 2% reductions in cumulative hospitalizations and deaths by mid-2021. Assuming high vaccination coverage (> 28%) and no major relaxations in distancing, masking, gathering size, or hygiene guidelines between now and spring 2021, our model predicts that a combination of vaccination and population immunity will lead to low or near-zero transmission levels by the second quarter of 2021.Competing Interest StatementThe authors have declared no competing interest.Funding StatementMFB, TNAT are funded by a grant from the Bill and Melinda Gates Foundation (INV-005517). FY is supported by the NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N272201400007C. KB was partially supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM133700. WPH is funded by an award from the NIGMS (U54 GM088558). JA is funded by the Penn State MRSEC, Center for Nanoscale Science, NSF DMR-1420620. EH was partially supported by NSF DMS-2015273.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:None needed. Study is a mathematical modeling evaluation of vaccine prioritization based on publicly available COVID-19 data.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and code are available at https://github.com/bonilab/covid19-vaccine-allocation-RI-MA https://github.com/bonilab/covid19-vaccine-allocation-RI-MA