PT - JOURNAL ARTICLE AU - Nicole Renninger AU - Nick Nastasi AU - Ashleigh Bope AU - Samuel J. Cochran AU - Sarah R. Haines AU - Neeraja Balasubrahmaniam AU - Katelyn Stuart AU - Aaron Bivins AU - Kyle Bibby AU - Natalie M. Hull AU - Karen C. Dannemiller TI - Indoor dust as a matrix for surveillance of COVID-19 outbreaks AID - 10.1101/2021.01.06.21249342 DP - 2021 Jan 01 TA - medRxiv PG - 2021.01.06.21249342 4099 - http://medrxiv.org/content/early/2021/01/11/2021.01.06.21249342.short 4100 - http://medrxiv.org/content/early/2021/01/11/2021.01.06.21249342.full AB - Ongoing disease surveillance is a critical tool to mitigate viral outbreaks, especially during a pandemic. Environmental monitoring has significant promise even following widespread vaccination among high-risk populations. The goal of this work is to demonstrate molecular SARS-CoV-2 monitoring in bulk floor dust and related samples as a proof-of-concept of a non-invasive environmental surveillance methodology for COVID-19 and potentially other viral diseases. Surface swab, passive sampler, and bulk floor dust samples were collected from rooms of individuals infected with COVID-19, and SARS-CoV-2 was measured with quantitative reverse transcription polymerase chain reaction (RT-qPCR) and two digital PCR (dPCR) methods. Bulk dust samples had geometric mean concentration of 159 copies/mg-dust and ranged from non-detects to 23,049 copies/mg-dust detected using ddPCR. An average of 88% of bulk dust samples were positive for the virus among detection methods compared to 55% of surface swabs and fewer on the passive sampler (19% carpet, 29% polystyrene). In bulk dust, SARS-CoV-2 was detected in 76%, 93%, and 97% of samples measured by qPCR, chip-based dPCR, and droplet dPCR respectively. Detectable viral RNA in the bulk vacuum bags did not measurably decay over 4 weeks, despite the application of a disinfectant before room cleaning. Future monitoring efforts should further evaluate RNA persistence and heterogeneity in dust. This study did not measure virus viability in dust or potential transmission associated with dust. Overall, this work demonstrates that bulk floor dust is a potentially useful matrix for long-term monitoring of viral disease outbreaks in high-risk populations and buildings.Importance Environmental surveillance to assess pathogen presence within a community is proving to be a critical tool to protect public health, and it is especially relevant during the ongoing COVID-19 pandemic. Importantly, environmental surveillance tools also allow for the detection of asymptomatic disease carriers and for routine monitoring of a large number of people as has been shown for SARS-CoV-2 wastewater monitoring. However, additional monitoring techniques are needed to screen for outbreaks in high-risk settings such as congregate care facilities. Here, we demonstrate that SARS-CoV-2 can be detected in bulk floor dust collected from rooms housing infected individuals. This analysis suggests that dust may be a useful and efficient matrix for routine surveillance of viral disease outbreaks.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis project was funded by faculty start-up funds at Ohio State University.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Not human subjects researchAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData will be available as indicated in the manuscript upon peer-reviewed publication. https://doi.org/10.5061/dryad.3n5tb2rg1