TY - JOUR T1 - Weighted burden analysis in 200,000 exome-sequenced subjects characterises rare variant effects on risk of type 2 diabetes JF - medRxiv DO - 10.1101/2021.01.08.21249453 SP - 2021.01.08.21249453 AU - David Curtis Y1 - 2021/01/01 UR - http://medrxiv.org/content/early/2021/01/09/2021.01.08.21249453.abstract N2 - Type 2 diabetes (T2D) is a disease for which both common genetic variants and environmental factors influence risk. A few genes have been identified in which very rare variants have large effects on risk and here we carry out a weighted burden analysis of rare variants in a sample of over 200,000 exome-sequenced participants in the UK Biobank project, of whom over 13,000 have T2D. Variant weights were allocated based on allele frequency and predicted effect, as informed by a previous analysis of hyperlipidaemia. There was an exome-wide significant increased burden of rare, functional variants in three genes, GCK, HNF4A and GIGYF1. GIGYF1 has not previously been identified as a diabetes risk gene but its product is plausibly involved in the modification of insulin signalling. A number of other genes did not attain exome-wide significance but were highly ranked and potentially of interest, including ALAD, PPARG, GYG1 and GHRL. Loss of function (LOF) variants were associated with T2D in GCK and GIGYF1 whereas nonsynonymous variants annotated as probably damaging were associated in GCK and HNF4A. Overall, fewer than 1% of T2D cases carried one of these variants. In two genes previously implicated in diabetes aetiology, HNF1A and HNF1B, there was an excess of LOF variants among cases but the small numbers of these fell well short of statistical significance, suggesting that even larger datasets will be helpful for more fully elucidating the contribution of rare genetic variants to T2D risk.Competing Interest StatementThe authors have declared no competing interest.Funding StatementI received no external funding for this work.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:UK Biobank had obtained ethics approval from the North West Multi-centre Research Ethics Committee which covers the UK (approval number: 11/NW/0382) and had obtained informed consent from all participants. The UK Biobank approved an application for use of the data (ID 51119) and ethics approval for the analyses was obtained from the UCL Research Ethics Committee (11527/001).All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe raw data is available on application to UK Biobank. Detailed results with variant counts cannot be made available because they might be used for subject identification. Scripts and relevant derived variables will be deposited in UK Biobank. ER -