RT Journal Article SR Electronic T1 Inflight Transmission of COVID-19 Based on Aerosol Dispersion Data JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.01.08.21249439 DO 10.1101/2021.01.08.21249439 A1 Zhaozhi Wang A1 Edwin R. Galea A1 Angus Grandison A1 John Ewer A1 Fuchen Jia YR 2021 UL http://medrxiv.org/content/early/2021/01/08/2021.01.08.21249439.abstract AB Background An issue of concern to the travelling public is the possibility of in-flight transmission of COVID-19 during long- and short-haul flights. The aviation industry maintain the probability of contracting the illness is small based on reported cases, modelling and data from aerosol dispersion experiments conducted on-board aircraft.Methods Using experimentally derived aerosol dispersion data for a B777-200 aircraft and a modified version of the Wells-Riley equation we estimate inflight infection probability for a range of scenarios involving quanta generation rate and face mask efficiency. Quanta generation rates were selected based on COVID-19 events reported in the literature while mask efficiency was determined from the aerosol dispersion experiments.Results The MID-AFT cabin exhibits the highest infection probability. The calculated maximum individual infection probability (without masks) for a 2-hour flight in this section varies from 4.5% for the “Mild Scenario” to 60.2% for the “Severe Scenario” although the corresponding average infection probability varies from 0.1% to 2.5%. For a 12-hour flight, the corresponding maximum individual infection probability varies from 24.1% to 99.6% and the average infection probability varies from 0.8% to 10.8%. If all passengers wear face masks throughout the 12-hour flight, the average infection probability can be reduced by approximately 73%/32% for high/low efficiency masks. If face masks are worn by all passengers except during a one-hour meal service, the average infection probability is increased by 59%/8% compared to the situation where the mask is not removed.Conclusions This analysis has demonstrated that while there is a significant reduction in aerosol concentration due to the nature of the cabin ventilation and filtration system, this does not necessarily mean that there is a low probability or risk of in-flight infection. However, mask wearing, particularly high-efficiency ones, significantly reduces this risk.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was received to support this study.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No IRB was required for this study.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data on which the analysis is based is available online in the third party pdf that can be obtained from the link provided. https://www.usTRANSCOM.mil/cmd/docs/TRANSCOM%20Report%20Final.pdf