RT Journal Article SR Electronic T1 SARS-CoV-2 RNAaemia predicts clinical deterioration and extrapulmonary complications from COVID-19 JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.12.19.20248561 DO 10.1101/2020.12.19.20248561 A1 Ram-Mohan, Nikhil A1 Kim, David A1 Zudock, Elizabeth J A1 Hashemi, Marjan M A1 Tjandra, Kristel C A1 Rogers, Angela J A1 Blish, Catherine A A1 Nadeau, Kari C. A1 Newberry, Jennifer A A1 Quinn, James V A1 O’Hara, Ruth A1 Ashley, Euan A1 Nguyen, Hien A1 Jiang, Lingxia A1 Hung, Paul A1 , A1 Blomkalns, Andra L A1 Yang, Samuel YR 2020 UL http://medrxiv.org/content/early/2020/12/22/2020.12.19.20248561.abstract AB Background The determinants of COVID-19 disease severity and extrapulmonary complications (EPCs) are poorly understood. We characterise the relationships between SARS-CoV-2 RNAaemia and disease severity, clinical deterioration, and specific EPCs.Methods We used quantitative (qPCR) and digital (dPCR) PCR to quantify SARS-CoV-2 RNA from nasopharyngeal swabs and plasma in 191 patients presenting to the Emergency Department (ED) with COVID-19. We recorded patient symptoms, laboratory markers, and clinical outcomes, with a focus on oxygen requirements over time. We collected longitudinal plasma samples from a subset of patients. We characterised the role of RNAaemia in predicting clinical severity and EPCs using elastic net regression.Findings 23·0% (44/191) of SARS-CoV-2 positive patients had viral RNA detected in plasma by dPCR, compared to 1·4% (2/147) by qPCR. Most patients with serial measurements had undetectable RNAaemia 10 days after onset of symptoms, but took 16 days to reach maximum severity, and 33 days for symptoms to resolve. Initially RNAaemic patients were more likely to manifest severe disease (OR 6·72 [95% CI, 2·45 – 19·79]), worsening of disease severity (OR 2·43 [95% CI, 1·07 - 5·38]), and EPCs (OR 2·81 [95% CI, 1·26 – 6·36]). RNA load correlated with maximum severity (r = 0·47 [95% CI, 0·20 - 0·67]).Interpretation dPCR is more sensitive than qPCR for the detection of SARS-CoV-2 RNAaemia, which is a robust predictor of eventual COVID-19 severity and oxygen requirements, as well as EPCs. Since many COVID-19 therapies are initiated on the basis of oxygen requirements, RNAaemia on presentation might serve to direct early initiation of appropriate therapies for the patients most likely to deteriorate.Funding NIH/NIAID (Grants R01A153133, R01AI137272, and 3U19AI057229 – 17W1 COVID SUPP #2) and a donation from Eva Grove.Evidence before this study The varied clinical manifestations of COVID-19 have directed attention to the distribution of SARS-CoV-2 in the body. Although most concentrated and tested for in the nasopharynx, SARS-CoV-2 RNA has been found in blood, stool, and numerous tissues, raising questions about dissemination of viral RNA throughout the body, and the role of this process in disease severity and extrapulmonary complications. Recent studies have detected low levels of SARS-CoV-2 RNA in blood using either quantitative reverse transcriptase real-time PCR (qPCR) or droplet digital PCR (dPCR), and have associated RNAaemia with disease severity and biomarkers of dysregulated immune response.Added value of this study We quantified SARS-CoV-2 RNA in the nasopharynx and plasma of patients presenting to the Emergency Department with COVID-19, and found an array-based dPCR platform to be markedly more sensitive than qPCR for detection of SARS-CoV-2 RNA, with a simplified workflow well-suited to clinical adoption. We collected serial plasma samples during patients’ course of illness, and showed that SARS-CoV-2 RNAaemia peaks early, while clinical condition often continues to worsen. Our findings confirm the association between RNAaemia and disease severity, and additionally demonstrate a role for RNAaemia in predicting future deterioration and specific extrapulmonary complications.Implications of all the available evidence Variation in SARS-CoV-2 RNAaemia may help explain disparities in disease severity and extrapulmonary complications from COVID-19. Testing for RNAaemia with dPCR early in the course of illness may help guide patient triage and management.Competing Interest StatementSY is a Scientific Advisory Board member of COMBiNATi Inc.Funding StatementNIH/NIAID (Grants R01A153133, R01AI137272, and 3U19AI057229-17W1 COVID SUPP #2) and a donation from Eva Grove.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Stanford University ED COVID-19 Biobank IRB-approved (eP-55650)All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesDe-identified study data are presented as online datasets.