TY - JOUR T1 - Simulation-Based Study on the COVID-19 Airborne Transmission in a Restaurant JF - medRxiv DO - 10.1101/2020.12.10.20247403 SP - 2020.12.10.20247403 AU - Han Liu AU - Sida He AU - Lian Shen AU - Jiarong Hong Y1 - 2020/01/01 UR - http://medrxiv.org/content/early/2020/12/14/2020.12.10.20247403.abstract N2 - COVID-19 has shown a high potential of transmission via virus-carrying aerosols as supported by growing evidence. However, detailed investigations that draw direct links between aerosol transport and virus infection are still lacking. To fill in the gap, we conducted a systematic computational fluid dynamics (CFD)-based investigation of indoor air flow and the associated aerosol transport in a restaurant setting, where likely cases of airborne infection of COVID-19 caused by asymptomatic individuals were widely reported by the media. We employed an advanced in-house large eddy simulation (LES) solver and other cutting-edge numerical methods to resolve complex indoor processes simultaneously, including turbulence, flow–aerosol interplay, thermal effect, and the filtration effect by air conditioners. Using the aerosol exposure index derived from the simulation, we are able to provide a spatial map of the airborne infection risk under different settings. Our results have shown a remarkable direct linkage between regions of high aerosol exposure index and the reported infection patterns in the restaurant, providing strong support to the airborne transmission occurring in this widely-reported incidence. Using flow structure analysis and reverse-time tracing of aerosol trajectories, we are able to further pinpoint the influence of environmental parameters on the infection risks and highlight the needs for more effective preventive measures, e.g., placement of shielding according to the local flow patterns. Our research, thus, has demonstrated the capability and value of high-fidelity CFD tools for airborne infection risk assessment and the development of effective preventive measures.Competing Interest StatementThe authors have declared no competing interest.Funding StatementJiarong Hong would like to acknowledge the support of University of Minnesota Rapid Response Grant from Office for Vice President of Research (OVPR).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No IRB approval is needed for this study.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data that support the findings of this study are available from the corresponding author upon reasonable request. ER -