RT Journal Article SR Electronic T1 Routine asymptomatic testing strategies for airline travel during the COVID-19 pandemic: a simulation analysis JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.12.08.20246132 DO 10.1101/2020.12.08.20246132 A1 Kiang, Mathew V A1 Chin, Elizabeth T A1 Huynh, Benjamin Q A1 Chapman, Lloyd A C A1 Rodríguez-Barraquer, Isabel A1 Greenhouse, Bryan A1 Rutherford, George W A1 Bibbins-Domingo, Kirsten A1 Havlir, Diane A1 Basu, Sanjay A1 Lo, Nathan C YR 2020 UL http://medrxiv.org/content/early/2020/12/11/2020.12.08.20246132.abstract AB Background Airline travel has been significantly reduced during the COVID-19 pandemic due to concern for individual risk of SARS-CoV-2 infection and population-level transmission risk from importation. Routine viral testing strategies for COVID-19 may facilitate safe airline travel through reduction of individual and/or population-level risk, although the effectiveness and optimal design of these “test-and-travel” strategies remain unclear.Methods We developed a microsimulation of SARS-CoV-2 transmission in a cohort of airline travelers to evaluate the effectiveness of various testing strategies to reduce individual risk of infection and population-level risk of transmission. We evaluated five testing strategies in asymptomatic passengers: i) anterior nasal polymerase chain reaction (PCR) within 3 days of departure; ii) PCR within 3 days of departure and PCR 5 days after arrival; iii) rapid antigen test on the day of travel (assuming 90% of the sensitivity of PCR during active infection); iv) rapid antigen test on the day of travel and PCR 5 days after arrival; and v) PCR within 3 days of arrival alone. The travel period was defined as three days prior to the day of travel and two weeks following the day of travel, and we assumed passengers followed guidance on mask wearing during this period. The primary study outcome was cumulative number of infectious days in the cohort over the travel period (population-level transmission risk); the secondary outcome was the proportion of infectious persons detected on the day of travel (individual-level risk of infection). Sensitivity analyses were conducted.Findings Assuming a community SARS-CoV-2 incidence of 50 daily infections, we estimated that in a cohort of 100,000 airline travelers followed over the travel period, there would be a total of 2,796 (95% UI: 2,031, 4,336) infectious days with 229 (95% UI: 170, 336) actively infectious passengers on the day of travel. The pre-travel PCR test (within 3 days prior to departure) reduced the number of infectious days by 35% (95% UI: 27, 42) and identified 88% (95% UI: 76, 94) of the actively infectious travelers on the day of flight; the addition of PCR 5 days after arrival reduced the number of infectious days by 79% (95% UI: 71, 84). The rapid antigen test on the day of travel reduced the number of infectious days by 32% (95% UI: 25, 39) and identified 87% (95% UI: 81, 92) of the actively infectious travelers; the addition of PCR 5 days after arrival reduced the number of infectious days by 70% (95% UI: 65, 75). The post-travel PCR test alone (within 3 days of landing) reduced the number of infectious days by 42% (95% UI: 31, 51). The ratio of true positives to false positives varied with the incidence of infection. The overall study conclusions were robust in sensitivity analysis.Interpretation Routine asymptomatic testing for COVID-19 prior to travel can be an effective strategy to reduce individual risk of COVID-19 infection during travel, although post-travel testing with abbreviated quarantine is likely needed to reduce population-level transmission due to importation of infection when traveling from a high to low incidence setting.Competing Interest StatementNCL has received grants and personal fees from the World Health Organization and the California Department of Public Health unrelated to the current study. GWR has received funding from the San Francisco Department of Public Health and the California Department of Public Health for COVID-19-related work unrelated to the current study.Funding StatementNCL is supported by the University of California, San Francisco (Department of Medicine). MVK is supported in part by the National Institute on Drug Abuse of the National Institutes of Health (K99DA051534). This content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Not human subjects research.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and code publicly available.