%0 Journal Article %A Gary Lin %A Alisa Hamilton %A Oliver Gatalo %A Fardad Haghpanah %A Takeru Igusa %A Eili Klein %A For the CDC MInD-Healthcare Network %T Investigating the effects of absolute humidity and human encounters on transmission of COVID-19 in the United States %D 2020 %R 10.1101/2020.10.30.20223446 %J medRxiv %P 2020.10.30.20223446 %X Background Mounting evidence suggests that the primary mode of transmission of SARS-CoV-2 is aerosolized transmission from close contact with infected individuals. Even though transmission is a direct result of human encounters, environmental conditions, such as lower humidity, may enhance aerosolized transmission risks similar to other respiratory viruses such as influenza.Methods We utilized dynamic time warping to cluster all 3,137 counties in the United States based on temporal data on absolute humidity from March 10 to September 29, 2020. We then used a multivariate generalized additive model (GAM) combining data on human mobility derived from mobile phone data with humidity data to identify the potential effect of absolute humidity and mobility on new daily cases of COVID-19 while considering the temporal differences between seasons.Results The clustering analysis found ten groups of counties with similar humidity levels. We found a significant negative effect between increasing humidity and new cases of COVID-19 in most regions, particularly in the period from March to July. The effect was greater in regions with generally lower humidity in the Western, Midwest, and Northeast regions of the US. In the two regions with the largest effect, a 1 g/m3 increase of absolute humidity resulted in a 0.21 and 0.15 decrease in cases. The effect of mobility on cases was positive and significant across all regions in the July-Sept time period, though the relationship in some regions was more mixed in the March to June period.Conclusions We found that increasing humidity played an important role in falling cases in the spring, while increasing mobility in the summer contributed more significantly to increases in the summer. Our findings suggest that, similar to other respiratory viruses, the decreasing humidity in the winter is likely to lead to an increase in COVID-19 cases. Furthermore, the fact that mobility data were positively correlated suggests that efforts to counteract the rise in cases due to falling humidity can be effective in limiting the burden of the pandemic.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was funded by the Centers for Disease Control and Prevention (CDC) MInD-Healthcare Program (Grant Numbers U01CK000589, 1U01CK000536, and contract number 75D30120P07912). The funders had no role in the design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Exempted from IRB oversight as the study is based on published secondary data.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data that support the findings of this study are openly available through the Johns Hopkins Center for Systems Science and Engineering, Unacast Social Distancing Scorecard, and NOAA National Centers for Environmental Information. %U https://www.medrxiv.org/content/medrxiv/early/2020/11/04/2020.10.30.20223446.full.pdf