PT - JOURNAL ARTICLE AU - James A. Hay AU - Lee Kennedy-Shaffer AU - Sanjat Kanjilal AU - Marc Lipsitch AU - Michael J. Mina TI - Estimating epidemiologic dynamics from single cross-sectional viral load distributions AID - 10.1101/2020.10.08.20204222 DP - 2020 Jan 01 TA - medRxiv PG - 2020.10.08.20204222 4099 - http://medrxiv.org/content/early/2020/10/13/2020.10.08.20204222.short 4100 - http://medrxiv.org/content/early/2020/10/13/2020.10.08.20204222.full AB - Virologic testing for SARS-CoV-2 has been central to the COVID-19 pandemic response, but interpreting changes in incidence and fraction of positive tests towards understanding the epidemic trajectory is confounded by changes in testing practices. Here, we show that the distribution of viral loads, in the form of Cycle thresholds (Ct), from positive surveillance samples at a single point in time can provide accurate estimation of an epidemic’s trajectory, subverting the need for repeated case count measurements which are frequently obscured by changes in testing capacity. We identify a relationship between the population-level cross-sectional distribution of Ct values and the growth rate of the epidemic, demonstrating how the skewness and median of detectable Ct values change purely as a mathematical epidemiologic rule without any change in individual level viral load kinetics or testing. Although at the individual level measurement variation can complicate interpretation of Ct values for clinical use, we show that population-level properties reflect underlying epidemic dynamics. In support of these theoretical findings, we observe a strong relationship between the time-varying effective reproductive number, R(t), and the distribution of Cts among positive surveillance specimens, including median and skewness, measured in Massachusetts over time. We use the observed relationships to derive a novel method that allows accurate inference of epidemic growth rate using the distribution of Ct values observed at a single cross-section in time, which, unlike estimates based on case counts, is less susceptible to biases from delays in test results and from changing testing practices. Our findings suggest that instead of discarding individual Ct values from positive specimens, incorporation of viral loads into public health data streams offers a new approach for real-time resource allocation and assessment of outbreak mitigation strategies, even where repeat incidence data is not available. Ct values or similar viral load data should be regularly reported to public health officials by testing centers and incorporated into monitoring programs.Competing Interest StatementML discloses honoraria/consulting from Merck, Affinivax, Sanofi-Pasteur, and Antigen Discovery; research funding (institutional) from Pfizer, and unpaid scientific advice to Janssen, Astra-Zeneca, and Covaxx (United Biomedical).Funding StatementThis work is supported by U.S. National Institutes of Health Director's Early Independence Award DP5-OD028145 (MJM, JAH), the Morris-Singer Fund (LKS and ML), U.S. Centers for Disease Control and Prevention Award U01IP001121 (LKS and ML), and U.S. National Institute of General Medical Sciences award U54GM088558 (ML, JAH, LKS).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:IRB approval was obtained from Harvard School of Public Health for use of de-identified viral load data. IRB 20-1703.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll code is available at https://github.com/jameshay218/ct_dynamics_preprint. The Ct values from Massachusetts will be made available in a later version of this manuscript. https://github.com/jameshay218/ct_dynamics_preprint