Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19 – Preliminary Report

SUPPLEMENTARY APPENDIX

RECOVERY Collaborative Group

Contents

Details of the RECOVERY Collaborative Group ... 2
Supplementary Methods... 20
Study organization ... 20
Protocol changes .. 20
Selection of hydroxychloroquine dose ... 21
Supplementary statistical methods .. 22
Ascertained and classification of study outcomes .. 22
Randomisation form ... 22
Follow-up form .. 25
Interim analyses: role of the Data Monitoring Committee .. 30
References ... 30
Supplementary Tables .. 31
Table S1: Baseline characteristics of patients considered unsuitable for randomization to hydroxychloroquine compared with those randomized to hydroxychloroquine versus usual care ... 32
Table S2: Treatments given, by randomized allocation .. 33
Table S3: Effect of allocation to hydroxychloroquine on new major cardiac arrhythmia ... 34
Details of the RECOVERY Collaborative Group

Writing Committee

*, † equal contribution

Steering Committee

Co-Chief Investigators P Horby, MJ Landray; Clinical Trial Unit Leads R Haynes, E Juszczak; Members JK Baillie, L Chappell, SN Faust, T Jaki, K Jeffery, WS Lim, M Mafham, A Montgomery, K Rowan.

Data Monitoring Committee

RECOVERY Trial Central Coordinating Office

Co-Chief Investigators P Horby, MJ Landray; Clinical Trial Unit Leads R Haynes, E Juszczak; Trial management L Fletcher (coordinator), J Barton, A Basoglu, R Brown, W Brudlow, S Howard, K Taylor; Programming and validation B Goodenough, G Cui, A King, M Lay, D Murray, W Stevens, K Wallendszuz, R Welsh; Data linkage C Crichton, J Davies, R Goldacre, F Knight, J Latham-Mollart, M Mafham, M Nunn, H Salih, J Welch; Clinical support G Pessoa-Amorim; Quality assurance C Knott, J Wiles; Statistics JL Bell, J Emberson, E Juszczak, L Linsell, N Staplin; Communications G Bagley, S Cameron, S Chamberlain, B Farrell, H Freeman, A Kennedy, A Whitehouse

National Institute for Health Research Clinical Research Network

Paediatric working group

Obstetric working group

L Chappell (coordinator), M Knight, S Pavord, C Williamson.

Clinical support

NHS Lothian Out of Hours support line team M Odam (coordinator), P Black, B Gallagher, L Macllnnes, R O’Brien, K Priestley, A Sauderson; *Clinical Trial Service Unit Out of Hours clinical support* L Bowman, F Chen, R Clarke, M Goonasekara, R Haynes, W Herrington, P Judge, M Mafham, S Ng, D Preiss, C Reith, E Sammons, D Zhu.

Health records

NHS DigiTrials, Southport H Pinches, P Bowker, V Byrne-Watts, G Chapman, J Gray, A Rees, MJ Landray, M Mafham, N Mather, T Denwood; *Intensive Care National Audit & Research Centre, London* D Harrison; *National Records of Scotland* G Turner; *Public Health Scotland* J Bruce; *SAIL Databank, University of Swansea* C Arkley, S Rees.

Drug supply

Local Clinical Centre RECOVERY trial staff

(listed in descending order of the number of patients randomised per site)

Nottingham University Hospitals NHS Trust WS Lim (PI), M Ali, D Ashton, G Babington, D Batra, L Bendall, A Buck, G Bugg, J Butler, J Cantli, P Davies, A Fatemi, F Fatemi, M Fatemi, L Fleming, L Hodgen, L Howard, C Hutchinson, B Jackson, C Khurana, M Langley,

North Middlesex University Hospital NHS Trust J Moreno-Cuesta (PI), S Rokadiya (Co-PI), A Govind, A Haldeos, K Leigh-Ellis, V Rachel, C van Someren, R Vincent.

Mahadevan-Bava, T Mahendiran, M O'Toole, S Pinches, D Rattehalli, U Sinha, M Subramanian, J Vamvakopoulos, S Waidyanatha.

St George's University Hospitals NHS Foundation Trust T Bicanic (PI), T Harrison (Co-PI), A Adebiyi, T Samakomva, St Georges COVID 19 Research Team.

James Paget University Hospitals NHS Foundation Trust J Patrick (PI), B Burton (Co-I), J Chapman, V Choudhary, C Hacon, K Mackintosh, H Sutherland, M Whelband, E Wilhelmsen.

West Suffolk NHS Foundation Trust M Moody (PI), S Barkha (Sub-PI), S Bhagat, H Cockerill, J Godden, J Kellett, T Murray, P Oats, A Saraswatula, A Williams, L Wood.

South Tyneside and Sunderland NHS Foundation Trust E Fuller (PI), A MacNair (Co-PI), M Rangar (Co-PI), N Mullen PI (Paediatrics), C Brown, A Burns, C Caroline, R Davidson, M Dickson, B Duncan, N Elkaram, I Emmerson, L Fairlie, M Hashimm, J Henderson, K Hinshaw, J Holden, S Laybourne, P Madgwick, K Martin, M McKee, J Moore, P Murphy, R Shahrul, A Smith, L Smith, M Smith, B Stidolph, L Terry, A Trotter, F Wakinshaw, M Walton.

United Lincolnshire Hospitals NHS Trust M Chablani (PI), R Barber (Co-PI), S Archer, R Barber, S Butler, A Chingale, C Flood, O Francis, A Kirkby, R Mishra, K Netherton, L Osborne, A Reddy, A Sloan.

Liverpool University Hospitals NHS Foundation Trust S Todd (PI), I Welters (Co-PI), D Wootton (Co-PI), A Al Balushi, D Barr, J Byrne, D Coey, T Cross, K Haigh, C Hall, M Harrison, S Hope, K Hunter, S Iyer, A Jackson, J Keoghan, J Lewis, P Lopez, C Lowe, M Middleton, M Nugent, L Pauls, I Quayle, S Raghunath, M Riley, J Sedano, D Shaw, S Stevenson, A Stockdale, R Tangney, V Waugh, K Williams.

Bedford Hospital NHS Trust E Thomas (PI), D Bagmane (Co-PI), B Jallow (Co-PI), I Nadeem (Co-PI), M Negmедин (Co-PI), A Vaidya (Co-PI), A Amjad, A Anthony-Pillai, I Armata, R Arora, R Bhanot, D Callum, P Chrysostomou, F De Santanana Miranda, S Farnworth, N Fatimah, L Grosu, A Haddad, M Hikmat, UF Khatana, I Koopmans, E Lister, R Lorusso, N Nathaniel, CS Ong, K Pandya, M Penacerrada, S Rahama, L Salih, W Tan, S Trussell, J Valentine, R Wulandari.

NHS Greater Glasgow and Clyde: Queen Elizabeth University Hospital M Sim (Co-PI), K Blythe (Co-PI), L Jawaeheer (Co-PI), L Pollock (Co-PI), S Wishart (Co-PI), M McGtetrick (Sub-I), J Rolo (Sub-I), N Baxter, J Ferguson, K Ferguson, S Henderson, S Kennedy-Hay, A Kidd, MA Ledingham, M Lowe, R McDougall, M McFadden, N Mcglinchey, L McKay, B McLaren, C McParland, J McTaggart, J Millar, L Rooney, H Stubbs, M Wilson.

Brighton and Sussex University Hospitals NHS Trust M Llewellyn (PI), H Brown, E Barbon, G Bassett, L Bennett, A Bexley, Z Cipinova, J Gaylard, Z He, C Laycock, D Mullan, C Richardson, V Sellick, D Skinner, M Smith.

NHS Lothian: Western General Hospital O Koch (PI), A Abu-Arafeh, E Allen, C Balmforth, A Barnett-Vanes, R Baruah, S Blackley, S Clifford, A Clarke, M Curtin, M Evans, C Ferguson, S Ferguson, N Fethers, N Freeman, E Godden, R Harrison, B Hastings, S Htwe, AJW Kwek, O Lloyd, C Mackintosh, A MacRaidl, W Mahmood, E Mahony, J McCrae, E
Moatt, S Morris, C Mutch, K Nunn, M Perry, J Rhodes, N Rodgers, A Shepherd, R Sutherland, A Tasiou, A Tufail, D Waters, T Wilkinson, R Woodfield, J Wubetu.

Southern HSC Trust R Convery (PI), J Brannigan, D Cosgrove, C McCullough, D McFarland, R McNulty, S Sands, O Thompson.

Shrewsbury and Telford Hospital NHS Trust J Moon (PI), N Biswas, A Bowes, H Button, M Carnhan, S Deshpande, C Fenton, M Ibrahim, J Jones, H Millward, M Rees, N Schunke, J Stickley, M Tadros, H Tivenan.

Swansea Bay University Local Health Board B Healy (PI), S Bareford, I Blyth, A Bone, E Brinkworth, R Chudleigh, Y Ellis, S Georges, S Green, R Harford, J Harris, A Holborow, C Johnston, P Jones, M Krishnan, N Leopold, F Morris, A Mughal, E Pratt, T Rees, G Saleeb, J Watts, M Williams.

St Helens and Knowsley Teaching Hospitals NHS Trust G Barton (PI), S Dealing, R Garr, S Greer, N Hornby, S Mayor, A McCairn, S Rao.

Dorset County Hospital NHS Foundation Trust J Chambers (PI), J Birch, L Bough, J Graves, S Horton, R Thomas, W Verling, S Williams, P Williams, B Winter-Goodwin, S Wiseman, D Wixted.

The Queen Elizabeth Hospital, King's Lynn, NHS Foundation Trust M Blunt (PI), J Ali, K Beaumont, K Bishop, H Bloxham, P Chan, Z Coton, H Curgenven, M Elsaaadany, T Fuller, M Iqbal, M Israa, S Jeddi, SA Kamerkar, EET Lim, E Nadar, K Naguleswaran, O Poluyi, G Rewitzky, S Ruff, A Velusamy.

The Royal Wolverhampton NHS Trust S Gopal (PI), R Barlow, CH Cheong, D Churchill, K Davies, M Green, N Harris, A Kumar, S Metherell, S Milgate, L Radford, J Rogers, A Smallwood.

Mid Essex Hospital Services NHS Trust A Hughes (PI), J Radhakrishnan (Co-PI), T Camburn, C Catley, E Dawson, C Fox, N Fox, H Gerrish, S Gibson, H Guth, F McNeela, A Rao, S Reid, B Singizi, S Smolen, S Williams, L Willsher, J Wootton.

East Lancashire Hospitals NHS Trust S Chukkambotla (PI), S Duberley, W Goddard, K Marsden.

Milton Keynes University Hospital NHS Foundation Trust R Stewart (PI), S Bowman (Co-PI), A Chakraborty (Co-PI), L How (Co-PI), D Mital (Co-PI), L Anguvaa, J Bae, G Bega, S Bosompem, E Clare, A Dooley, S Fox, J Mead, S Mehdi, L Mew, L Moran, E Mwaura, M Nathvani, A Oakley, A Rose, A Sanaullah, D Scaletta, S Shah, L Siamia, J Smith, O Spring, S Velankar, F Williams, L Wren, F Wright.

South Eastern HSC Trust D Alderdice (PI), J Courtney (Co-I), J Elder (Co-I), D Hart (Co-I), K Henry (Co-I), R Hewitt (Co-I), A Kerr (Co-I), J McKeever (Co-I), C O’Gorman (Co-I), S Rowan (Co-I), T Trinick (Co-I), B Valecka (Co-I), P Yew (Co-I), V Adeli, J Baker, A Campbell, J Foreman, P Gillen, S Graham, S Hagan, L Hammond, J MacIntyre, A Smith, G Young.

George Eliot Hospital NHS Trust S George (PI), K Ellis, V Gulia, J Gunn, E Hoover, T Kannan, R Musanhu, N Navaneetham, D Suter.

NHS Lanarkshire: University Hospital Monklands M Patel (PI), C McGoldrick (Co-PI), C Beith, L Ferguson, L Glass, P Grant, S MacFadyen, A McAlpine, M McLaughlin, S Rundell, C Sykes, M Taylor, B Welsh.

Stockport NHS Foundation Trust R Stanciu (PI), S Bennett, L Brown, C Cooper, A Davison, D Eleanor, J Farthing, A Ferrera, P Haywood, C Heal, H Jackson, J Johnson, A Lloyd, R Owen, A Pemberton, F Rahim, H Robinson, N Sadiq, R Samlal, V Subramanian, D Suresh, H Wieringa, I Wright.

NHS Lanarkshire: University Hospital Wishaw M Patel (PI), K Black, R Boyle, S Clements, J Fleming, L Glass, L Hamilton, E Jarvie, C MacDonald, D Vigni, B Welsh, P Wu.

Poole Hospital NHS Foundation Trust H Reschreiter (PI), S August, C Barclay, S Blunden, S Bokhandi, J Camsooksai, S Chessell, C Colvin, J Dube, S Grigsby, C Humphrey, S Jenkins, S Patch, A Shah, M Tighe, L Vinayakarao, B Wadams, E Woodward, M Woolcock.
Gateshead Health NHS Foundation Trust R Allcock (PI), M Armstrong, J Barbour, A Dale, V Deshpande, I Hashmi, E Johns, D Mansour, B McClelland, C McDonald, C Moller-Christensen, R Petch, R Sharma, L Southern, G Stiller.

Wye Valley NHS Trust I DuRand (PI), P Ryan (Deputy PI), J Al-Fori, J Birch, N Bray, A Carrasco, M Cohn, E Collins, S Cooper, A Davies, M Evans, K Hammerton, S Meyrick, B Mwale, L Myslivecek, C Seagrave, F Suliman, S Turner, J Woolley.

Worcestershire Acute Hospitals NHS Trust C Hooper (PI), K Austin, T Dawson, A Durie, C Hillman-Cooper, M Ling, J Tyler, P Watson, H Wood.

Cwm Taf Morgannwg University LHB C Lynch (PI), B Deacon, S Eccles, B Gibson, C Lai, L Margarit, DS Nair, S Owen, L Roche, S Sathe.

University College London Hospitals NHS Foundation Trust H Esmail (PI), RS Heyderman (Co-PI), DAJ Moore (Co-PI), F Beynon, PN Bodalia, XHS Chan, CY Chung, D Crilly, J Gahir, L Germain, J Glanville, E Kilich, N Lack, N Platt, I Skorupinska, M Skorupinska, J Spillane, N Z Fard.

Guy's and St Thomas' NHS Foundation Trust H Winslow (PI), L Brace, K Brooks, L Chappell, M Flanagan, J Kenny, G Nishku, C Singh, E Wayman, C Williamson, H Winslow, C Yearwood Martin.

Betsi Cadwaladr LHB: Wrexham Maelor Hospital D Southern (PI), S Ahmer, G Bennett, S David, S Davies, E Heselden, M Howells, R Hughes, S Kelly, A Lloyd, H Maraj, H Reddy, S Robertson, G Spencer, G Szabo, S Tomlins.

Barnsley Hospital NHS Foundation Trust K Inweregbe (PI), M Cunningham, A Daniels, L Harrison, S Hope, A Nicholson.

West Hertfordshire Hospitals NHS Trust V Page (PI), R Vancheeswaran (Co-PI), L Norris, T Varghese, X Zhao.

NHS Lothian: St John's Hospital S Lynch (PI), S Begg, M Colmar, C Cheyne, R Frake, A Gatenby, C Geddie, F Guarino, C Kuronen-Stewart, A MacRaild, M Mancuso-Marcello, M Odam, OK Otite, L Primrose, A Saunderson, A Williams.

Isle Of Wight NHS Trust M Pugh (PI), A Brown, S Grevatt, E Jenkins, S Knight, E Nicol, J Wilkins.

Harrogate and District NHS Foundation Trust A Kant (PI), C Taylor (Co-PI), A Amin, A Daly, SJ Foxton, E Lau, C Morgan, M Tripouki, L Will.

South Warwickshire NHS Foundation Trust S Tso (PI), P Parsons (Co-PI), S Bird, C Bannon, R Browne, B Campbell, S Dhariwal, G Kakoullis, F Mackie, C O'Brien, K Webb.

Northern HSC Trust P Minnis (PI), J Burns, L Davidson, A Fryatt, J Gallagher, C McGoldrick, M McMaster.

Hywel Dda LHB: Prince Philip Hospital S Ghosh (PI), S Coetzee, K Davies, L O'Brien, Z Omar, CV Williams.

NHS Lanarkshire: University Hospital Hairmyres M Patel (PI), F Burton (Co-PI), D Bell, R Boyle, D Cairney, K Douglas, L Glass, E Lee, L Lennon, B Welsh.

The Royal Marsden NHS Foundation Trust K Tatham (PI), P Angelini, E Bancroft, E Black, A Dela Rosa, E Durie, I Leslie, S Shepherd, S Wong.

Royal Brompton & Harefield NHS Foundation Trust A Shah (PI), A Reed (Co-PI), A Aramburo, R Mordi, C Prendergast, P Rogers, N Soussi, J Wallen.

Western HSC Trust M Kelly (PI), D Concannon, D McClintock, V Mortland, N Smyth.

NHS Greater Glasgow and Clyde: Inverclyde Royal Hospital M Azharuddin (PI), H Papaconstantinou (Co-PI), D Cartwright, T McClay, E Murray, O Olukoya.

The Walton Centre NHS Foundation Trust R Davies (PI), H Arndt, E Hetherington.

Hywel Dda LHB: Withybush Hospital J Green (PI), R Hughes, C Macphee, H Thomas.

Alder Hey Children's NHS Foundation Trust D Hawcutt (PI), D Afolabi, K Allison, S McWilliam, L O'Malley, L Rad, N Rogers, P Sanderson, G Seddon, J Whitbread.

Birmingham Women's and Children's NHS Foundation Trust K Morris (PI), J Groves, K Hong, D Jyothish, S Sultan.

Velindre NHS Trust J Powell (PI), R Adams (Co-PI), A Jackson.

NHS Western Isles G Stanczuk (PI), I Garcia Deniz, S Klaczek, M Murdoch.

NHS Golden Jubilee National Hospital B Shelley (PI), V Irvine, F Thompson.

Liverpool Women's NHS Foundation Trust R McFarland (PI), P Corlett, C Cunningham, S Holt, J McKenzie, C Morgan, M Turner.

Dragon's Heart Hospital J Coulson (PI), B Moore.
Supplementary Methods

Study organization

The RECOVERY trial is an investigator-initiated, individually randomized, open-label, controlled trial to evaluate the efficacy and safety of a range of putative treatments in patients hospitalized with COVID-19. The protocol is available at www.recoverytrial.net. The trial was conducted at 176 National Health Service (NHS) hospital organizations in the United Kingdom. The trial was coordinated by a team drawn from the Clinical Trial Service Unit and the National Perinatal Epidemiology Clinical Trials Unit within the Nuffield Department of Population Health at University of Oxford, the trial sponsor. Support for local site activities was provided by the National Institute for Health Research Clinical Research Network.

Treatment supply to local sites was supported by National Health Service (NHS) England and Public Health England. Access to relevant routine health care and registry data was supported by NHS DigiTrials, the Intensive Care National Audit and Research Centre, Public Health Scotland, National Records Service of Scotland, and the Secure Anonymised Information Linkage (SAIL) at University of Swansea.

Protocol changes

RECOVERY is a randomized trial among patients hospitalized for COVID-19. All eligible patients receive usual standard of care in the participating hospital and are randomly allocated between no additional treatment and one of several active treatment arms. Over time, additional treatment arms have been added (see Table). In version 4.0 of the protocol, a second randomization was introduced for those trial participants with hypoxia (oxygen saturation <92% on air or receiving oxygen) and inflammation (C-reactive protein ≥75 mg/dL), comparing the addition of tocilizumab vs. control on top of the treatment assigned in the first randomization. In version 6.0, a factorial design was introduced to the first randomization such that participants were also randomized to convalescent plasma vs. no additional treatment. As outlined in the protocol, if one or more of the active treatments was not available at the hospital or is believed, by the attending clinician, to be contraindicated (or definitely indicated) for the specific patient, then random allocation was between the remaining treatment arms.

The original and final protocol are included in the supplementary material to this publication, together with summaries of the changes made.

Table. Protocol changes to treatment comparisons

<table>
<thead>
<tr>
<th>Protocol version</th>
<th>Date</th>
<th>Randomization</th>
<th>Treatment arms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>13-Mar-2020</td>
<td>Main (part A)</td>
<td>No additional treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lopinavir-ritonavir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low-dose corticosteroid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nebulised Interferon-β-1a (never activated)</td>
</tr>
<tr>
<td>2.0</td>
<td>23-Mar-2020</td>
<td>Main (part A)</td>
<td>No additional treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lopinavir-ritonavir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low-dose corticosteroid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydroxychloroquine</td>
</tr>
<tr>
<td>Protocol version</td>
<td>Date</td>
<td>Randomization</td>
<td>Treatment arms</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>3.0</td>
<td>07-Apr-2020</td>
<td>Main (part A)</td>
<td>No additional treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lopinavir-ritonavir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low-dose corticosteroid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydroxychloroquine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Azithromycin</td>
</tr>
<tr>
<td>4.0</td>
<td>14-Apr-2020</td>
<td>Main (part A)</td>
<td>No additional treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lopinavir-ritonavir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low-dose corticosteroid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydroxychloroquine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Azithromycin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>second^b</td>
<td>No additional treatment Tocilizumab</td>
</tr>
<tr>
<td>5.0</td>
<td>24-Apr-2020</td>
<td>-</td>
<td>(no change – extension to children <18 years old)</td>
</tr>
<tr>
<td>6.0</td>
<td>14-May-2020</td>
<td>Main (part A)</td>
<td>No additional treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main (part B factorial)</td>
<td>No additional treatment Convalescent plasma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second^c</td>
<td>No additional treatment Tocilizumab</td>
</tr>
</tbody>
</table>

^a for patients with (a) oxygen saturation <92% on air or requiring oxygen or children with significant systemic disease with persistent pyrexia; and (b) C-reactive protein ≥75 md/dL)
^b enrolment ceased 8 June 2020 as more than 2,000 patients had been recruited to the active arm
^c enrolment ceased 5 June 2020 when the Data Monitoring Committee advised that the Chief Investigators review the unblinded data.

Selection of hydroxychloroquine dose

The hydroxychloroquine dose regimen was based on previous pharmacokinetic modelling of plasma and whole blood hydroxychloroquine concentrations in healthy volunteers, the treatment of malaria and in rheumatological conditions. The choice of dose and predicted safety margins were also informed by pharmacometric studies of chloroquine in the treatment of both severe and uncomplicated malaria and in self-poisoning. In-vitro studies suggest that high concentrations of hydroxychloroquine are required for maximal effects, although inhibitory concentrations derived from static Vero cell cultures are likely to provide, at best, an approximate guide to required in-vivo concentrations. Hydroxychloroquine plasma concentrations in short course regimens are determined primarily by distribution rather than elimination. We reasoned that the target respiratory epithelium was likely to be in a dynamic equilibrium with free plasma concentrations. The objective therefore was to design a regimen that provided free plasma concentrations that were as high as safely possible throughout the treatment period. As a parenteral formulation is not generally available, dosing was designed around currently available hydroxychloroquine sulfate tablets (200mg salt: 155 mg base equivalent). To achieve loading while allowing adequate distribution, the loading doses (4 tablets) were given at 0 and 6 hours and from 12 hours maintenance doses (2 tablets) were given 12 hourly.
The dosing regimen was based on pharmacometric modelling:1 All pharmacokinetic models were coded and simulated using the pharmacometric software NONMEM v.7.4.3 (Icon Development Solution, Ellicott City, MD). A small study in healthy volunteers was used for dose simulations4, reporting a 3-compartment disposition model with a terminal elimination half-life of 50 days. Reported true coefficients and exponents were used to derive mean pharmacokinetic parameters for simulations. Both short course treatments5 and repeated dosing to steady-state6 were simulated, to ensure that model-derived concentrations captured the reported drug measurements, resulting in a relative bioavailability parameter of 60% to scale model predictions to reported concentrations. A fixed value of 30% between-patient variability was added exponentially in all parameters in order to capture the approximately 4- to 5-fold variability seen in observed whole blood measurements. Allometric scaling of clearance (exponent of 0.75) and volume (exponent of 1) parameters was implemented in order to simulate different weight groups. A total of 1,000 stochastic simulations were performed and presented as median values and 95% prediction intervals.1

Supplementary statistical methods

Baseline−predicted risk of 28-day mortality was estimated through the formula 100 x exp(a)/(1 + exp(a)), where a = −1.23 − 2.85 (if age <50) − 2.03 (if age 50−59) − 1.21 (if age 60−69) − 0.51 (if age 70−79) + 0.42 (if male) − 0.34 (if >7 days since symptom onset) + 0.86 (if on oxygen only at randomization) + 2.18 (if on invasive mechanical ventilation at randomization) − 0.01 (if history of diabetes) + 0.22 (if history of heart disease) + 0.21 (if history of chronic lung disease) + 0.50 (if history of kidney disease). These regression coefficients were derived from a multivariable logistic regression model using data from all trial participants who (at the time of data-lock) had complete 28-day mortality follow-up data. The regression model additionally adjusted for treatment allocation (with usual care designated the reference category) and for all possible two-way interactions between the above baseline characteristics and treatment allocation. These additional terms were ignored when calculating baseline-predicted risk, however, in order to ensure that the estimates corresponded to risk if assigned usual care. Patients were then subdivided into three approximately equally-sized groups (across all RECOVERY participants) on the basis of their predicted risk: <30%, ≥30% to <45%, and ≥45%.

Ascertainment and classification of study outcomes

Information on baseline characteristics and study outcomes was collected through a combination of electronic case report forms (see below) completed by members of the local research team at each participating hospital and linkage to National Health Service, clinical audit, and other relevant health records. Full details are provided in the RECOVERY Definition and Derivation of Baseline Characteristics and Outcomes Document which was published online (www.recoverytrial.net) on 9 June 2020.

Randomisation form

The Randomisation form (shown below) was completed by trained study staff. It collected baseline information about the participant (including demographics, COVID-19 history, comorbidities and suitability for the study treatments) and availability of the study treatments. Once completed and electronically signed, the treatment allocation was displayed.
The following modifications were made to the Randomisation form during the trial:

<table>
<thead>
<tr>
<th>Randomisation form version</th>
<th>Date of release</th>
<th>Major modifications from previous version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>19-Mar-20</td>
<td>Initial version (protocol V1.0)</td>
</tr>
<tr>
<td>2.0</td>
<td>25-Mar-20</td>
<td>For protocol V2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydroxychloroquine added as treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Known long QT syndrome added to comorbidities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Severe depression removed from comorbidities</td>
</tr>
<tr>
<td>3.0</td>
<td>09-Apr-20</td>
<td>For protocol V3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Azithromycin added as treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Suspected SARS-CoV-2 infection included in eligibility criteria</td>
</tr>
<tr>
<td>[Second randomisation form introduced]</td>
<td>23-Apr-20</td>
<td>For protocol 4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Eligibility criteria for second randomisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tocilizumab vs control as treatment allocations</td>
</tr>
<tr>
<td>4.0</td>
<td>09-May-20</td>
<td>For protocol V5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Age ≥18 years removed from eligibility criteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Additional questions on child's age and weight added</td>
</tr>
<tr>
<td>5.0</td>
<td>21-May-20</td>
<td>For protocol V6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Convalescent plasma added as treatment</td>
</tr>
<tr>
<td>6.0</td>
<td>28-May-20</td>
<td>Baseline use of remdesivir</td>
</tr>
</tbody>
</table>
Test version only (v6.03 - 27/05/20)

Randomisation Program

Call Freephone 0800 138 5451 to contact the RECOVERY team for URGENT questions using the randomisation Program or for medical advice. All NON-URGENT queries should be emailed to recovery_trials@ucl.ac.uk

Section A: Baseline and Eligibility

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of treating clinician</td>
<td></td>
</tr>
<tr>
<td>Patient details</td>
<td></td>
</tr>
<tr>
<td>Patient first name</td>
<td></td>
</tr>
<tr>
<td>Patient surename</td>
<td></td>
</tr>
<tr>
<td>NHS number</td>
<td></td>
</tr>
<tr>
<td>Date in patient's date of birth</td>
<td></td>
</tr>
<tr>
<td>Sex of patient</td>
<td></td>
</tr>
<tr>
<td>Has consent been taken in line with local guidance?</td>
<td></td>
</tr>
<tr>
<td>Has patient/relatives consented to participation in the study?</td>
<td></td>
</tr>
<tr>
<td>Does the patient have severe or suspected COVID-19 infection?</td>
<td></td>
</tr>
<tr>
<td>Does the patient have asthma?</td>
<td></td>
</tr>
<tr>
<td>Has patient been vaccinated for COVID-19?</td>
<td></td>
</tr>
<tr>
<td>COVID-19 symptoms onset date</td>
<td></td>
</tr>
<tr>
<td>Date of hospitalisation</td>
<td></td>
</tr>
<tr>
<td>Does the patient require oxygen?</td>
<td></td>
</tr>
<tr>
<td>Does the patient CURRENTLY require ventilation or ECMO?</td>
<td></td>
</tr>
<tr>
<td>Does the patient have any CURRENT comorbidities or other medical problems?</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td>Heart disease</td>
<td></td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis</td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td></td>
</tr>
<tr>
<td>Obstructive liver disease</td>
<td></td>
</tr>
<tr>
<td>Severe kidney impairment (eGFR<30 or on dialysis)</td>
<td></td>
</tr>
<tr>
<td>Known long QT syndrome</td>
<td></td>
</tr>
<tr>
<td>Current treatment with macrolide antibiotics which are to be continued</td>
<td></td>
</tr>
<tr>
<td>Macrolide antibiotics include clarithromycin, azithromycin and erythromycin</td>
<td></td>
</tr>
<tr>
<td>Previous abnormal reaction to blood or blood products transfused</td>
<td></td>
</tr>
<tr>
<td>Are the following treatments UNTREATABLE for the patient?</td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td></td>
</tr>
<tr>
<td>Carbocapsina</td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td></td>
</tr>
<tr>
<td>Chloroquine</td>
<td></td>
</tr>
<tr>
<td>Convalescent plasma</td>
<td></td>
</tr>
<tr>
<td>Are the following treatments available?</td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td></td>
</tr>
<tr>
<td>Carbocapsina</td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td></td>
</tr>
<tr>
<td>Chloroquine</td>
<td></td>
</tr>
<tr>
<td>Convalescent plasma</td>
<td></td>
</tr>
<tr>
<td>Current vaccination</td>
<td></td>
</tr>
<tr>
<td>Is the patient currently prescribed remdesivir?</td>
<td></td>
</tr>
</tbody>
</table>

Please sign off this form once complete:

- **Name:**
- **NHS number:**
- **Profesional email:**

[Signature] [Date]
Follow-up form

The Follow-up form (shown on the next page) collected information on study treatment adherence (including both the randomised allocation and use of other study treatments), vital status (including date and provisional cause of death if available), hospitalisation status (including date of discharge), respiratory support received during the hospitalisation, occurrence of any major cardiac arrhythmias and renal replacement therapy received.

The following modifications were made to the Follow-up form during the trial:

<table>
<thead>
<tr>
<th>Follow-up form version</th>
<th>Date of release</th>
<th>Modifications from previous version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>30-Mar-20</td>
<td>Initial version</td>
</tr>
</tbody>
</table>
| 2.0 | 09-Apr-20 | Information on other treatments used during admission:
| | | • Azithromycin, IL-6 receptor antagonist
| | | Fact and result of SARS-CoV-2 PCR test |
| 3.0 | 09-Apr-20 | Update to functionality; no changes to questions |
| 4.0 | 23-Apr-20 | Duration of treatments added |
| 5.0 | 12-May-20 | Capture of major cardiac arrhythmias added |
| 6.0 | 28-May-20 | Updates to wording of questions. Information on other treatments used during admission:
| | | • Remdesivir, convalescent plasma |
Hydroxychloroquine for COVID-19 – Preliminary Report

Follow-up

<table>
<thead>
<tr>
<th>Date of randomisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient's date of birth</td>
</tr>
<tr>
<td>yyyy-mm-dd</td>
</tr>
</tbody>
</table>

1. Which of the following treatment(s) did the patient **definitely** receive as part of their hospital admission after randomisation? (NB Include RECOVERY study-allocated drug, only if given, PLUS any of the other treatments if given as standard hospital care)

- [] No additional treatment
- [] Lopinavir-ritonavir
- [] Corticosteroid (dexamethasone, prednisolone or hydrocortisone)
- [] Hydroxychloroquine
- [] Azithromycin or other macrolide (eg, clarithromycin, erythromycin)
- [] Tocilizumab or sarilumab
- [] Remdesivir

The following questions only appear if the treatments have been allocated at randomisation

Please select number of days the patient received lopinavir-ritonavir

- [] 1
- [] 2
- [] 3
- [] 4
- [] 5
- [] 6
- [] 7
- [] 8
- [] 9
- [] 10

Please select number of days the patient received corticosteroid (dexamethasone, prednisolone or hydrocortisone)

- [] 1
- [] 2
- [] 3
- [] 4
- [] 5
- [] 6
- [] 7
- [] 8
- [] 9
- [] 10

Please select number of days the patient received hydroxychloroquine

- [] 1
- [] 2
- [] 3
- [] 4
- [] 5
- [] 6
- [] 7
- [] 8
- [] 9
- [] 10

Please select number of days the patient received azithromycin

- [] 0
- [] 1
- [] 2
- [] 3
- [] 4
- [] 5
- [] 6
- [] 7
- [] 8
- [] 9
- [] 10

Please select number of days the patient received other macrolides (eg, clarithromycin, erythromycin)

- [] 0
- [] 1
- [] 2
- [] 3
- [] 4
- [] 5
- [] 6
- [] 7
- [] 8
- [] 9
- [] 10

Please select number of doses of tocilizumab or sarilumab the patient received

- [] 1
- [] >1

This question and the following question cannot both be zero
Convalescent Plasma

How many convalescent plasma infusions did the patient receive?

- [] 0
- [] 1
- [] 2

This is plasma given as part of trial, not any standard fresh frozen plasma or other blood products that the patient may have been given.

Were any infusions stopped early for any reason i.e., the patient did not receive the full amount?

- [] Yes
- [] No

How many were stopped early?

- [] 1
- [] 2

Health Status

2. **Was a COVID-19 test done for this patient?**

 (If multiple tests were done, and the results were positive and negative, please tick Yes — positive result and Yes — negative result)

 - [] Yes — positive result
 - [] Yes — negative result
 - [] Not done

3. **What is the patient’s vital status?**

 - [] Alive
 - [] Dead

3.1 **What is the patient’s current hospitalisation status?**

 - [] Inpatient
 - [] Discharged

 The patient has been enrolled in the trial for **NaN** days

3.1.1 **Date follow-up form completed**

 - [] YYYY-MM-DD

*Q3.1 is only completed if the patients is alive at Q3

Q3.1.1 is only completed if patient is still an inpatient at Q3
3.1.1 What was the date of discharge?

yyyy-mm-dd

3.1 What was the date of death?

yyyy-mm-dd

3.2 What was the underlying cause of death?

This can be obtained from the last entry in part 1 of the death certificate

- COVID-19
- Other infection
- Cardiovascular
- Other

Please give details

4. Did the patient require any form of assisted ventilation (ie, more than just supplementary oxygen)?

- Yes
- No

Please answer the following questions:

4.1 For how many days did the patient require assisted ventilation?

4.2 What type of ventilation did the patient receive?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPAP alone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-invasive ventilation (eg, BIPAP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-flow nasal oxygen (eg, AIRVO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical ventilation (intubation/tracheostomy)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ECMO

Total number of days the patient received invasive mechanical ventilation (intubation/tracheostomy) (from randomisation until discharge/death/28 days after randomisation)

Complete if invasive mechanical ventilation (intubation/tracheostomy) is Yes

5. Has the participant been documented to have a NEW cardiac arrhythmia at any point since the main randomisation?
- Yes
- No
- Unknown

5.1 Please select all of the following which apply

- Atrial flutter or atrial fibrillation
- Supraventricular tachycardia
- Ventricular tachycardia (including torsades de pointes)
- Ventricular fibrillation
- Atrioventricular block requiring intervention (eg, cardiac pacing)

If Q5 is answered Yes, you must select at least one option here

6. Did the patient require use of renal dialysis or haemofiltration?
- Yes
- No

7. Please enter UKOSS case ID if known

 Enter the full UKOSS case ID, e.g., COR_123

 Complete only if patient was pregnant at randomisation

 (select if you do not know the UKOSS case ID)
 - Not known
Interim analyses: role of the Data Monitoring Committee

The independent Data Monitoring Committee reviews unblinded analyses of the study data and any other information considered relevant at intervals of around 2 weeks. The committee is charged with determining if, in their view, the randomized comparisons in the study provide evidence on mortality that is strong enough (with a range of uncertainty around the results that was narrow enough) to affect national and global treatment strategies. In such a circumstance, the Committee would inform the Steering Committee who would make the results available to the public and amend the trial arms accordingly. Unless that happened, the Steering Committee, investigators, and all others involved in the trial would remain blind to the interim results until 28 days after the last patient had been randomized to a particular intervention arm. Further details about the role and membership of the independent Data Monitoring Committee are provided in the protocol.

The Data Monitoring Committee determined that to consider recommending stopping a treatment early for benefit would require at least a 3 to 3.5 standard error reduction in mortality. The Committee concluded that examinations of the data at every 10% (or even 5%) of the total data would lead to only a marginal increase in the overall type I error rate.

The Data Monitoring Committee met to review interim outcome data on dexamethasone on five occasions prior to being informed by the Steering Committee that recruitment to dexamethasone was to be stopped. With the requirement of a 3.5 standard error overall mortality benefit before a recommendation to stop would be made, this means that the alpha ‘spent’ at these interim analyses was only of the order of about 0.06% (hence the alpha preserved to claim significance at the final analysis was 4.94%).

References

Supplementary Tables
Table S1: Baseline characteristics of patients considered unsuitable for randomization to hydroxychloroquine compared with those randomized to hydroxychloroquine versus usual care

<table>
<thead>
<tr>
<th></th>
<th>Randomized (n=4716)</th>
<th>Considered unsuitable (n=3199)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
</tr>
<tr>
<td><70</td>
<td>65.7 (15.5)</td>
<td>67.2 (16.1)</td>
</tr>
<tr>
<td>≥70 to <80</td>
<td>4355 (58%)</td>
<td>1714 (54%)</td>
</tr>
<tr>
<td>≥80</td>
<td>1575 (21%)</td>
<td>676 (21%)</td>
</tr>
<tr>
<td></td>
<td>1583 (21%)</td>
<td>807 (25%)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4666 (62%)</td>
<td>2016 (63%)</td>
</tr>
<tr>
<td>Female*</td>
<td>2847 (38%)</td>
<td>1182 (37%)</td>
</tr>
<tr>
<td>Number of days since symptom onset</td>
<td>9 (5-13)</td>
<td>8 (4-12)</td>
</tr>
<tr>
<td>Number of days since hospitalization</td>
<td>2 (1-5)</td>
<td>2 (1-4)</td>
</tr>
<tr>
<td>Respiratory support received</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No oxygen received</td>
<td>1838 (24%)</td>
<td>834 (26%)</td>
</tr>
<tr>
<td>Oxygen only</td>
<td>4586 (61%)</td>
<td>2043 (64%)</td>
</tr>
<tr>
<td>Invasive mechanical ventilation</td>
<td>1089 (14%)</td>
<td>322 (10%)</td>
</tr>
<tr>
<td>Previous diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1994 (27%)</td>
<td>918 (29%)</td>
</tr>
<tr>
<td>Heart disease</td>
<td>1939 (26%)</td>
<td>1020 (32%)</td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>1641 (22%)</td>
<td>758 (24%)</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>20 (<0.5%)</td>
<td>13 (<0.5%)</td>
</tr>
<tr>
<td>HIV</td>
<td>34 (<0.5%)</td>
<td>19 (1%)</td>
</tr>
<tr>
<td>Severe liver disease</td>
<td>91 (1%)</td>
<td>76 (2%)</td>
</tr>
<tr>
<td>Severe kidney impairment</td>
<td>570 (8%)</td>
<td>330 (10%)</td>
</tr>
<tr>
<td>Any of the above</td>
<td>4255 (57%)</td>
<td>1995 (62%)</td>
</tr>
</tbody>
</table>

Results are count (%), mean ± standard deviation, or median (inter-quartile range). The 'oxygen only' group includes non-invasive ventilation. Severe liver disease defined as requiring ongoing specialist care. Severe kidney impairment defined as estimated glomerular filtration rate <30 mL/min/1.73m².
Table S2: Treatments given, by randomized allocation

<table>
<thead>
<tr>
<th>Treatment allocation</th>
<th>Hydroxychloroquine (n=1561)</th>
<th>Usual care (n=3155)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance data available</td>
<td>1516</td>
<td>3078</td>
</tr>
<tr>
<td>Hydroxychloroquine received</td>
<td>1395 (92%)</td>
<td>13 (<0.5%)</td>
</tr>
<tr>
<td>Other treatments received</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>125 (8%)</td>
<td>271 (9%)</td>
</tr>
<tr>
<td>Lopinavir-Ritonavir</td>
<td>2 (<0.5%)</td>
<td>6 (<0.5%)</td>
</tr>
<tr>
<td>Azithromycin or other macrolides</td>
<td>265 (17%)</td>
<td>590 (19%)</td>
</tr>
<tr>
<td>Tocilizumab or Sarilumab</td>
<td>26 (2%)</td>
<td>79 (3%)</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>0 (0%)</td>
<td>1 (<0.5%)</td>
</tr>
<tr>
<td>Not recorded</td>
<td>15 (1%)</td>
<td>11 (<0.5%)</td>
</tr>
</tbody>
</table>

Percentages are of those with a completed follow-up form. Remdesivir only became available for use in the UK under the Medicines & Healthcare Products Regulatory Agency Emergency Access to Medicines Scheme on 26 May 2020, 13 days prior to closure of the hydroxychloroquine arm of the study.
Table S3: Effect of allocation to hydroxychloroquine on new major cardiac arrhythmia

<table>
<thead>
<tr>
<th>Treatment allocation</th>
<th>Hydroxychloroquine (n=1561)</th>
<th>Usual care (n=3155)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number with follow-up form*</td>
<td>698</td>
<td>1357</td>
</tr>
<tr>
<td>Atrial flutter or atrial fibrillation</td>
<td>39 (5.6%)</td>
<td>69 (5.1%)</td>
</tr>
<tr>
<td>Other supraventricular tachycardia</td>
<td>9 (1.3%)</td>
<td>17 (1.3%)</td>
</tr>
<tr>
<td>Subtotal: Supraventricular tachycardia</td>
<td>48 (6.9%)</td>
<td>80 (5.9%)</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
<td>4 (0.6%)</td>
<td>9 (0.7%)</td>
</tr>
<tr>
<td>Ventricular fibrillation</td>
<td>2 (0.3%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Subtotal: Ventricular tachycardia or fibrillation</td>
<td>6 (0.9%)</td>
<td>9 (0.7%)</td>
</tr>
<tr>
<td>Atrioventricular block requiring intervention</td>
<td>1 (0.1%)</td>
<td>1 (0.1%)</td>
</tr>
<tr>
<td>Total: Any major cardiac arrhythmia</td>
<td>57 (8.2%)</td>
<td>91 (6.7%)</td>
</tr>
</tbody>
</table>

* Information on new cardiac arrhythmias was only collected on follow-up forms from 12 May 2020 onwards; percentages are of those with such a form completed.