Suppl. Fig. 1 A. Distribution of the IgG equivocal population (IgG 12-15 AU/mL) as number of individuals versus the number of symptoms. B. Distribution of the IgG positive population (IgG >15 AU/mL) as number of individuals versus the number of symptoms. Both populations follow a sigmoidal, four parameter logistic curve whereby X is the number of symptoms distributions R2 numbers are reported to demonstrate the fitness of the curve. C Distribuion of the IgG positive population (IgG>12 AU/mL) as number of individuals. ****p<0.0001 as calculated by unpaired student’s t test.
Suppl. Fig. 2 Distribution of the IgG positive population (IgG>12 AU/mL) as number of individuals divided by:

A. Staff and healthcare personnel in ICH and Gavazzeni
B. Age of staff and researchers in the whole population
C. Males and female distribution between staff and researchers in the whole population

** p< 0.05 as calculated by unpaired student’s t test
Suppl. Fig. 3 Distribution of the IgG positive population (IgG>12 AU/mL) as plasma levels divided by smoking habit (yes or no). N.s. not significant, as calculated by unpaired student’s t test.
Suppl. Fig. 4 Similar IgG plasma level distribution in the positive population (IgG >12 AU/mL) versus symptoms across the two major sites, ICH and Gavazzeni. The areas under the curve are respectively: 571 All, 550 ICH, 522 Gavazzeni. Below each graph is reported the corresponding ROC curve. All of them show 100% of sensitivity and specificity representing a perfect population distribution.
There is a trend toward a higher level of plasma IgG in healthcare professionals (physicians and nurses (OSA))